FIXED ASSET LOANS FOR FARMERS

AgriFin Conference - Colombo, Sri Lanka August 19-23, 2013

Mr. Arvind Sonmale

Managing Director & CEO Sustainable Agro-Commercial Finance Ltd.

Sustainable Agro-commercial Finance Ltd.

Agriculture In India

Land: Geographic area of **329m ha**; sown area **140 m ha**. Water: 70 m ha still Rain-fed. (50% Irrigation cover) Land Holding: Less than 1.5 ha/ farmer, one-hundredth that in the USA. **Productivity: Agricultural productivity one-third** to half that of world best levels. Against above, the government is now targeting 4% growth over the next two decades.

Characteristics of Existing Agriculture

- Marginal Land Holdings
- Rapid and widespread decline in ground water table.
- Inefficient use of inputs e.g. fertilizers, irrigation and pesticides
- Wastage of agricultural produce due to inadequate Post Harvest operations.
- Lack of awareness among farmers for modern crop production methods
- Ineffective extension service
- Insufficient financial resources for investments.
- High level of consumption subsidies resulting in wastages
- Low per hectare income for farmers

Demands of Future

PROJECTED FOODGRAIN DEMAND AND IRRIGATED				
CROP AREA				
	unit	2010	2025	2050
Food grain demand	million t	247	320	494
Net cultivated area	m ha	143	144	145
Total cropped area	m ha	193	204	232
Total irrigated crop area	m ha	79	98	146

Source: National Commission on Integrated water resources development, GOI

MICRO-IRRIGATION TECHNOLOGY

ADVANCES IN AGRICULTURAL INPUT MANAGEMENT - WATER, FERTILIZER and SELECTIVE PESTICIDE

History of Micro-Irrigation

- Earlier attempts were made by German researchers in 1860 by simply pumping irrigation water into clay pipes of underground drainage system.
- The first work on MIS was a study by House in Colorado in 1913 who concluded that drip was too expensive.
- An important breakthrough was made in Germany in 1920 when perforated pipes were used for irrigation.
- In 1930, the peach growers in Australia, pumped water through 5 cm GI pipe laid along the tree rows with water emitting points made on to the pipe as small triangular holes.

History of Micro-Irrigation

- In early 1940 Symcha Blass observed that a tree near a leaking faucet exhibited vigorous growth compared to other trees in the area. This led to the concept of MI where water is applied in very small amounts, drop by drop.
- The next breakthrough is in the material science, when polyethylene, a crack resistant and cheaper alternative was accidentally produced in a British laboratory. Later LDPE gave place to HDPE and in 1977 LLDPE was introduced.
- Thus micro-irrigation systems really got off the ground with the developments in plastic industry.
- Then the orifice emitters were developed to improve the consistency of "holes drilled into pipes"

History of Micro-Irrigation in India

- During late 60s and early 70s some Drip systems were adopted.
- These systems failed due to poor quality material and little or no support services by manufacturers.
- 4 to 5 manufacturers were in field of Drip system sale when Jains entered the market in 1987.
- Approximately 2500 ha were under drip in 1987.
- Jains with their commitment for service and best quality material boosted the awareness in farmers and subsequent sales.
- Area under drip during 1987 to 92 doubled every year.
- Presently 500,000 ha is under Drip in India out of which about 400,000 ha are covered by JISL systems/services.

Micro Irrigation Systems

- Frequent, slow application of water either directly onto the land surface or into the root zone of the crops
- Irrigating only the root zone of the crops rather than the entire land surface
- Maintaining the water content of the root zone at near optimum levels

Principles of Micro Irrigation

- Water is applied to the root zone of the plant directly.
- Water is applied at frequent intervals (daily) in controlled quantities as per requirements of the plants.
- Water is applied through a low pressure network including main, submain and lateral lines with emitters/drippers spaced along the lateral lines.
- Water is essentially passed through a filtration system to prevent suspended impurities, which may block the emitters.
- Water soluble fertilizers and nutrients can also be applied along with micro irrigation through a fertilizer tank and/or ventury.

Progress In Technology

Micro Irrigation - The Solution

Sustainable Agro-commercial Finance Ltd.

Water Use By Banana

Variety – Karpuravalli at 2 x 2 m spacing , Krishna dist., AP

Benefits Of Drip Irrigation

Сгор	Saving of fertilizer (%)	Increase in yield (%)
Okra	40	18
Onion	40	16
Broccoli	40	10
Banana	20	11
Potato	40	30
Tomato	40	33

Source:-Patel & Rajput, 2001

Benefits In Sugarcane Culture

Particulars	Drip	Flood	Gains over flood	
Productivity (t/ha)	85	55	54.50%	30 t
Water saving (mm)	1200	2200	45.5	1000 mm
Electricity Consumption (Kwh)	900	2160	58.3	1260 Kwh
Water used per t Cane (mm)	14.1	40	64.75	25.9 mm
Cost per t Cane (Rs)	379.4	541	29.9	161.6 Rs
Electricity used per t Cane (Kwh)	10.6	39.3	73	28.7 Kwh

Source: Narayanamoorthy, 2003

Flower Crops

Fruit Crops

Drip Irrigated Vegetables

		Yield after
Crop	National Average	lechnology
Сгор	t/ha	adoption
		t/ha
Tomato	17.35	150.00
Chilly	12.02	35.00
Brinjal	10.46	130.00
Okra	6.28	16.00
Onion	11.32	21.00
Cabbage	14.38	110.00
Cauliflower	14.22	33.00
Ash Gourd	11.91	50.00
Bitter Gourd	6.23	15.00
Ribbed Gourd	15.85	35.00
Bottle Gourd	12.21	66.00
Cucumber	6.48	20.00
French Beans	5.8	12.00
Beetroot	16.75	35.00

Data collected from adoptor farmers

STUDY OF INDIVIDUAL FARMER CASES

Case Study On Chilly

Farmer	Ravikumar, Kothagudem, Khammam, AP Mobile: 9440164800
CROP	GREEN CHILLI; in 2 acre
DRIP SYSTEM	16mm inline ; 4 lph emission
COST OF PRODUCTION	\$ 1965 / acre
YIELD	30 t / acre under drip
INCREMENTAL YIELD over flood irrigation	18 t / acre
RATE OF SALE	\$ 159 / t
NET INCOME under drip	\$ 2809 / 5 months
B:C Ratio	1.4:1 ; Payback period 1 season.

Case Study On Potato

Farmer	Ashok Varma, Hasalpur, Indore, MP Mobile: 9893427845
CROP	Potato; in 1 acre
DRIP SYSTEM	16mm inline ; 4 lph emission
COST OF PRODUCTION	\$ 545 / acre
YIELD	21 t / acre
INCREMENTAL YIELD over Flood irrigation	11 t / acre
RATE OF SALE	\$ 173 / t
NET INCOME under drip	\$ 3090 / 5 months
B:C Ratio	5.7:1; Payback period 1 season

Case Study On Sugarcane

Farmer	Mr. Mathivannan, Village Thamarakki, Sivagangai, Tamil Nadu, Mobile: 978662196
CROP	Sugarcane; in 3.5 acre
DRIP SYSTEM	16mm inline ; 4 lph emission
COST OF PRODUCTION	\$ 1305 / acre
YIELD	74 t / acre
INCREMENTAL YIELD over flood irrigation	36 t / acre
RATE OF SALE	\$ 46 / t
NET INCOME under drip	\$ 2059 / 11 months
B:C Ratio	1.6:1 ; Payback period 18 months

Case Study On Wheat

Farmer	Pannalal Kumarawat, Barud village, Khargone, Madhya Pradesh, Mobile: 9826405764
CROP	Wheat; in 1 acre
DRIP SYSTEM	12mm inline ; 4 lph emission
COST OF PRODUCTION	\$ 177 / acre
YIELD	2 t / acre grain; 2 t / acre fodder
INCREMENTAL YIELD under flood irrigation	0.8 t / acre
RATE OF SALE	\$ 277 / t grain; \$ 28 / t fodder
NET INCOME under drip	\$ 435 / 4 months
B:C Ratio	2.5:1; Payback period 1.5 years with rotation crops

Solar Powered Small Scale Drip Irrigation

- Solar powered Drip model for small farms.
- Water is stored in a earthen sump or plastic tank.
- Water is collected by rain water harvesting.
- This model would be ultimate package for remote rural farms to ensure securities in food, water and energy.

Thank You