

Spatial Disaggregation of Gross Domestic Product

An innovative method for producing high resolution economic activity information for Disaster Risk Management

Paul Baptiste Blanchard, Brian Blankespoor, Johanan Rivera-Fuentes, Rashmin Gunasekera, Oscar Ishizawa, Luis Felipe Jiménez (working paper in preparation)

DISASTER RISK MANAGEMENT AND RESILIENCE Global Solutions Group

Summary

1) Context and motivations

2) Methodology

3) Visualizing disaggregated GDP

4) Strengths and limitations

5) Applications in Disaster Risk Management

6) Q&A

Context and Motivations

 Context
 Methodology
 Visualization
 Strengths and considerations
 Applications

- Spatial component of disaster risk assessment
- Economic risk analysis \rightarrow Gross Domestic Product (GDP)
- Spatial mismatch hazard-exposure
- Poor statistical capacity in developing countries + informal activities
- Non-agricultural component of GDP : different spatial structure.

 \rightarrow Objectives:

Model a measure of economic activity at a fine resolution
 Scalability

Visualization

Strengths and considerationsApplications••••••

• Why GDP?

- "Monetary value of all goods and services produced in a country in a given period of time" (IMF)

- Economic performance
- GDP : refers to location (≠GNI) = spatial measure
- Accounting VS Spatial measure:
 - National accounts measure: Production, Income, Expenditure
 - Spatial: Production AND Consumption

→ workers, built-up areas, infrastructures... (non-agricultural)
Scale considered !

Methodology

Visualization

Strengths and considerations Applications

- Predict GDP at a scale different than GDP data observations

- Limited number of relevant indicators at cell level
- Measurement errors (including informality)
- Comparability of GDP values from country to country

Visualization

Strengths and considerations Applications

- Use of OECD GDP data
 - more reliable data
 - lower informal shares
 - larger sample size
- \rightarrow Consistency
- Calibration of a distribution model at the sub-national level
 - conversion issues
 - gets rid of some country fixed effects

Visualization

Strengths and considerations Applications

• Assumptions:

External validity assumption → correct specification, same underlying "true model"

- Model "blind" to the nature of the production (formal VS informal)
- Comparison OECD/LAC : expected results.

- comparable estimates

- higher standard errors
- lower goodness-of-fit

Visualization

Strengths and considerations Applications

Night time lights global map, 2014 (NOAA).

Methodology Context

Visualization $\bullet \bullet \bullet$

Strengths and considerations Applications $\bullet \bullet \bullet$

Night time lights Western Europe map, 2014 (NOAA).

Population Western Europe , 2014 (LandScan).

Visualization

Strengths and considerations

Applications

Data sources and compilation

Variable	Source	Observations
GDP	National Statistical Institutes WDI	OECD+LAC countries
Population	LandScan	Global
Nighttime lights (radiance calibrated)	NOAA	Global

- GDP data matched with GADM boundaries
- Gridded data aggregated up at corresponding administrative levels
- Urban shares from WDI
- Urban categories by population density

Visualization

Strengths and considerations A

Applications

Specification

- Set of specifications:
 - calibrated on both LAC & OECD data sets
 - pooled OLS
 - combination of different urban categories, quadratic terms, interaction terms, various functional forms
- Main findings:
 - Core urban centres unambiguously highly productive
 - Rural areas less productive (non-agricultural)
 - Lights/Population weakly correlated in secondary cities/sub-urban areas → lights=control for productivity

Visualization

Strengths and considerationsApplications••••••

• Final specification :

- share of core urban centres population

- interaction between share of population in less dense areas and corresponding share of night lights

- share of rural nighttime lights
- trade-off explaining power VS risk of overfitting
- Results :
 - (adj.)^{R²≈0.96} for OECD and lower for LAC
 - comparable estimates
 - higher standard errors

Visualizing disaggregated GDP

Methodology

•••••

Context

Strengths and considerations

 $\bullet \bullet \bullet$

Applications

 $\bullet \bullet \bullet$

Visualization

 $\bullet \bullet \bullet$

Context	Methodology	Visualization
••	•••••	•••

Strengths	and considera	itions Ap	plications
$\bullet \bullet \bullet$		• •	

Context Methodology Visualization

Strengths and considerations Applications

- non-agricultural GDP grids (0.83' \approx 1 km²)

- sub-national GDP tables (regional, municipal)
- distribution (%) + different metrics (constant, current, LCU, \$...)
- Informality adjustments (Schneider et al., 2010)

Strengths and Considerations

- Distribution model → External validity assumption → Reproducibility
- External validity tested for on LAC data set
- Finer distinction urban/rural with urban categories
- Nighttime lights (≈electricity consumption) to control for productivity
- Informal activities included
- Accurate sub-national estimations

ContextMethodologyVisualizationStrengths and considerationsApplications•••••••••••••••

- GDP : refers to location (≠GNI) → spatial measure ?
- "Economic activity" : byproduct consumption-production
- Scale at which it is used:
 - regional/municipal : accurate macroeconomic measure
 - cell-level : ?
- Seasonality

Visualization

Strengths and considerations Applications

• What it does not do :

- distinguish consumption/production at low scales

- characterize economic activities

- Room for improvement :
 - more recent NTL data
 - GHSL human settlement data
 - level model using more inputs

Applications in DRM

Visualization

Strengths and considerations

Applications

- Risk mitigation/quantification, preparedness...
- Economic vulnerability assessment
- Combined with other data to characterize GDP :
 - structure of the economy
 - interdependence of economic activities (non-structural losses)
 - economic vulnerability (firms sizes, business interruption...)

Visualization

Strengths and considerations A

Applications

Flood Risk Profiles in Central America

- Results presented are part of the ongoing Country Disaster Risk Profile (CDRP) study and The Disaster Risk & Resilience Analytics and Solutions (D-RAS) Knowledge Silo Breakers. Therefore, presented estimations and results should be considered as preliminary.
- The contents expressed in this presentation are entirely those of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Questions