# CENTRE for ECONOMIC PERFORMANCE

# CEP Discussion Paper No 1438 July 2016

# **Powering Education**

Fadi Hassan Paolo Lucchino





#### Abstract

More than 1.3 billion people worldwide have no access to electricity and this has first-order effects on several development dimensions. In this paper we focus on the link between access to light and education. We randomly distribute solar lamps to 7th grade pupils in rural Kenya and monitor their educational outcomes throughout the year at quarterly frequency. We find that access to lights through solar lamps is a relevant and effective input to education. Our identification strategy accounts for spillovers by exploiting the variation in treatment at the pupil level and in treatment intensity across classes. We find a positive and significant intention-to-treat effect as well as a positive and significant spillover effect on control students. In a class with the average treatment intensity of our sample (43%), treated students experience an increase in math grades of 0.88 standard deviations. Moreover, we find a positive marginal effect of treatment intensity on control students: raising the share of treated students in a class by 10% increases grades of control students by 0.22 standard deviations. We exploit household geolocation to disentangle within-class and geographical spillovers. We show that geographical spillovers do not have a significant impact and within-school interaction is the main source of spillovers. Finally, we provide suggestive evidence that the mechanism through which lamps affect students is by increasing co-studying at school especially after sunset.

Keywords: Randomised controlled trial, solar lamps, education, energy access, spillover effects, randomised saturation design JEL Classifications: O12; I25; C93

This paper was produced as part of the Centre's Trade Programme. The Centre for Economic Performance is financed by the Economic and Social Research Council.

#### Acknowledgements

This project was part of the Global Shapers initiative of the World Economic Forum under the Rome and Nairobi's hubs. We want to thank the team of Powering Impact that overviewed the full project for their outstanding support. We are deeply indebted to Givewatts as our supporting NGO on the field. We thank Enel Foundation and STICERD for funding the project. Paolo Lucchino acknowledges financial support from the ESRC. We have benefited from comments and discussions with Jenny Aker, Oriana Bandiera, Craig McIntosh, Gaia Narciso, Carol Newman, Olmo Silva, and Chris Udry. All remaining errors are ours.

Fadi Hassan, Trinity College Dublin, TIME and Centre for Economic Performance, London School of Economics. Paolo Lucchino, London School of Economics.

Published by Centre for Economic Performance London School of Economics and Political Science Houghton Street London WC2A 2AE

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means without the prior permission in writing of the publisher nor be issued to the public or circulated in any form other than that in which it is published.

Requests for permission to reproduce any article or part of the Working Paper should be sent to the editor at the above address.

© F. Hassan and P.Lucchino, submitted 2016.

## 1 Introduction

More than 1.3 billion people worldwide lack access to electricity and 40% of them live in Sub-Saharan Africa (IEA, 2013). This means that roughly a quarter of humanity lives without lights at home in the evening, without power at the workplace during the day, and without the possibility of reading and studying after dark. Energy poverty implies that most people are strongly constrained in their standards of living.

In Africa, the electrical power grid reaches only about 400 million of the continent's 1 billion people. In urban and semi-urban areas, over 30% of people have access to grid electricity. This figure drops to less than 2% in rural areas. The electrical power grid is expanding slowly and unevenly. Governments and the private sector are working to reach deeper into remote areas, but financial, political and logistical barriers have proven to be significant obstacles to overcome.

The link between energy access and education is an important and underexplored dimension of development. Looking at aggregate data, we can see a strong correlation between electrification rate and the completion of primary schooling (see Figure 1). The lack of access to light limits the possibility of studying after sunset and puts constraints on the time distribution of activities by students. In developing countries, it is not uncommon to find students of all ages gathering to read at night under the lights of a gas station or a shop (see Figure 2).<sup>1</sup> However, in rural areas, the lack of such basic infrastructure means that even this option may not be possible. Electrifying rural areas in developing countries is a long and costly process. By the time this occurs, generations of students risk being affected by the lack of lighting, undermining the process of human capital accumulation.

In this project, we evaluate the impact that solar lamps, which are a readily available source of lighting, have on education. We distribute solar lamps to 7th grade students in off-grid rural areas, randomising treatment at the pupil

<sup>&</sup>lt;sup>1</sup>The first picture, which made the headlines of major newspapers, refers to Daniel Cabrera, a nine-year-old boy from the Philippines, who is studying under the lights of a McDonald. The second picture is taken in Guinea and has been reported by the New York Times and BBC.

level. This is a novel experiment on a potentially key educational input for development. As lamps can be easily shared we are interested in identifying both the effects on the individuals who receive them and the spillovers on their peers. To identify these effects we exploit the variation in whether a student was given the lamp, determined through the randomisation of their distribution, as well as the variation in treatment intensity, that is the share of students in a given class who received the lamp. As we explain in detail later, the variation in treatment intensity is driven by administrative glitches that are uncorrelated with any outcome of interest.

The randomization at the pupil level and the variation of treatment intensity across classes allow us to use an identification strategy based on the randomised saturation approach as described in Baird et al. (2014) and McIntosh et al. (2014). We find a positive and significant intention-to-treat effect such that treated students in a class with the average treatment intensity of our sample, which is about 43%, experience an increase in math grades of 0.88 standard deviations. Moreover, the lamp affects control students too, such that increasing treatment intensity by 10% increases their math grades by 0.22 standard deviations.<sup>2</sup> Using data on the geolocation of households, we exploit the variation in treatment intensity across the geographical areas around pupils induced by the randomisation. We do not find robust evidence of geographical spillovers. Spillover effects appear to be driven by within-class interaction between students. Finally, using a survey on student's habits and time use, we find suggestive evidence that the mechanism through which the lamp affects students is by influencing studying habits; especially, by increasing co-studying at school after sunset.

Our paper is related to the large literature on inputs to education in developing countries. Promoting human capital accumulation is one of the key steps in the development process. The literature shows the importance of building school infrastructure (Duflo, 2001; Burde & Linden, 2013); the relevance of providing free primary education (Lucas & Mbiti, 2012); the effect of subsidies to households and pupils on enrolment (Schultz, 2004; Angrist & Lavy, 2009; Ambler et al., 2015); and the impact of monetary incentives on

 $<sup>^2\</sup>mathrm{All}$  results are robust to randomisation inference. We do not find effects on English, Swahili, Science and Social Science.

teachers' performance (Muralidharan & Sundararaman, 2011). Soft inputs like information on schooling returns (Jensen, 2010) and involving parents in school management (Gertler et al., 2012) have also been found to have a positive impact on educational outcomes. Our paper is closer in spirit to the literature that analyses the role of complementary inputs to education, such as deworming programs (Miguel & Kremer, 2004) and flip-charts (Glewwe, 2002). Given the lack of electrification in developing countries, our contribution is to investigate the importance of access to light as a key input for education and to measure the spillover effects that access to light can have on students.

Our paper is also related to the literature on energy access and development, such as Dinkelman (2011), Rud (2012), and Lipscomb et al. (2013). These papers are concerned with the effects of energy access on employment, industrialisation, human development and housing values. Our study complements this field by focusing on education. An important distinction, however, is that these studies examine the impact of electrification, which is a large region-wide technology shock, whereas we evaluate the effect of providing solar lamps, which is a smaller and idiosyncratic technology shock that relates to a more easily available and cheaper source of energy access.

Finally, our paper speaks to the broader literature on randomised control trials. Many experiments are likely to fail or have biased results because of the presence of spillovers. Our paper provides methodological guidance on how to use a randomised saturation approach, as described in Baird et al. (2014) and McIntosh et al. (2014), in order to account for spillovers even if the experiment was not initially designed for that. This requires variation in treatment intensity that is as good as random and being able to approximate the functional form underlying the relationship between treatment intensity and the dependent variable.

The paper is structured as follows: Section 2 describes the experiment structure; Section 3 discusses lamp usage and attrition; Section 4 shows that a standard identification strategy that does not account for spillovers fails to identify a significant intention-to-treat effect; Section 5 focuses on the role of spillovers and identifies the intention-to-treat effect and spillovers disentangling the effects of within-class interaction and geographical proximity; Section 6 provides suggestive evidence on the mechanism underlying the spillover effects; and Section 7 concludes.

# 2 Project structure, randomisation, and source of variation

The experiment involves about 300 students in 7<sup>th</sup> grade across 13 classes in the Loitokitok and Nzaui districts, relatively close to the Tanzanian border and mount Kilimanjaro (see Figure 3). We focus on schools in off-grid rural areas where household electrification is below 2.6%.

The project started with a baseline survey in June 2013 when we interviewed students and collected end of term grades from school transcripts. Lamps were distributed to the treatment group in September 2013, at the beginning of a new school term.<sup>3</sup> We then collected end of term grades for the treatment and control groups in November 2013, March 2014, and June 2014. We also rana extensive face-to-face surveys of students in November 2013 and March 2014.

The baseline survey covered 341 pupils. We were able to match 286 of these with the transcripts of grades provided by the school and they constitute our core sample, over which we conducted the randomisation. We distributed solar lamps to 143 pupils and, in order to mitigate resentment and in the interest of fairness, control students were promised that they would receive a lamp at the end of the experiment.<sup>4</sup> We randomise assignment to treatment at the pupil level so that within each class some students were in the treatment and some in the control group. We chose this level of randomisation to maximise statistical power, given the budget and the size of our sample. In our randomisation strategy, we seek balance between treatment and control

 $<sup>^{3}</sup>$ The new academic years start in January. This implies that the students in our sample started in 7th and finished in 8th grade. This contributed to attrition, as some students in our sample did not graduate to 8th grade or changed schools. As we discuss in Section 3, attrition is unrelated to treatment status.

<sup>&</sup>lt;sup>4</sup>Students in the control group received the lamp in September 2014.

groups on grades, which is our dependent variable, gender, classes, and a proxy for wealth.<sup>5</sup>

Given our sample size and the number of variables that we wanted to balance, we followed Bruhn & McKenzie (2009) and used a re-randomisation method where we selected the allocation of lamps that minimised the statistical difference in means between control and treatment out of 10,000 draws (the so called *MinMax t-stat* method). We prefer this method to stratification, because our sample size would have constrained the number of variables we could stratify on. In this way, we avoid strong imbalance on several variables without forcing close balance on each. Moreover, we chose re-randomisation rather than pairwise matching, because attrition would posed the risk of leading to the loss of too many observations, potentially invalidating the experiment. We follow recommendations in Bruhn & McKenzie (2009) in the econometric analysis, and account for our randomisation method by including balancing variables in the regression and also running permutation tests to validate our inference.

Table 1 reports regressions of the baseline values of the balancing variables on treatment over the sample at the beginning and at the end of our project; the balance between treatment and control was well maintained throughout our study. Moreover, we show that our sample is balanced also on other relevant variables for which we did not explicitly seek balance, like hours of studying at baseline, light source, school attendance, and mother's education.

In order to identify spillover effects we exploit the variation in class treatment intensity, that is the share of students in a given class who received the lamp. The variation in the treatment intensity between classes arose during the process of matching survey responses with school transcripts at baseline. Starting from the full sample of 341 students surveyed at baseline, a match with transcripts was achieved for only 286 students. The match rate differed across classes, leading to a variation in treatment intensity ranging between

 $<sup>{}^{5}</sup>$ We construct a wealth index using a principal component analysis based on house characteristics (e.g. type of walls, water, and toilet facilities) and a set of goods owned (e.g. radio, telephone, bicycle, etc.).

14% and 62% (see Table 4). We argue that the variation in the match rate is random. Mismatches occured for reasons such as: major misspellings of names in the survey; the use of Baptismal names in the survey and traditional names in the transcript; and inverting name and surname in the transcripts. Figure 4 provides an example of a transcript. Our enumerators did not use the transcripts as a reference for names when interviewing students, but asked students their names directly. So, for example, a mismatch occured when the student "Wambua Kyalo", as reported in the transcript, used his baptismal name "Jonathan Kyalo" in the survey.

Table 5 shows that matched and unmatched students are not statistically different across key observable characteristics like hours of study, wealth, mother's education, source of light etc. Given the random nature of being matched or unmatched, we argue that the two groups are balanced also on unobservable characteristics, so that we have experimental variation in the data. Table 6 reinforces this point by looking at balance at the class level. It shows that treatment intensity across classes is balanced over gender, teacher experience, wealth, and most grades.<sup>6</sup> There is imbalance in grades for science and social studies, but the content of the Kenyan Primary School syllabus generates little complementarity between these subjects and mathematics, which is where we find an effect.<sup>7</sup> Moreover, if we include grades at baseline in science and social studies as control variables, our results hold.

## 3 Treatment compliance and attrition

We run two student surveys, 3 and 6 months after treatment. During these follow-ups, we asked specific questions about lamp usage and appropriation. In terms of appropriation, 84% of treated students reported that the lamp stayed in their household when they were sleeping; the remaining 16% said that the lamp was kept in school at night. The lamp was resistant and broke in only three cases; in all the other cases the lamp was reported to

 $<sup>^{6}</sup>$ A student in a class whose treatment intensity is 10% higher than another class tends to have 1.9 extra points in mathematics, but this difference is not statistically insignificant.

<sup>&</sup>lt;sup>7</sup>Note that science covers topics like vegetation, how to create compost, human diseases and similar issues and not fields like physics or chemistry, which would have complementarities with math.

be in good condition or with only minor problems. Moreover, in all cases students declared that the solar charge was sufficient for either all or most of the activities they wanted to carry out with the lamp. All these elements suggest that compliance was high, implying that intention-to-treat will be very close to the average treatment effect.<sup>8</sup> Additionally, 97% of students declared that studying was the main activity they used the lamp for.<sup>9</sup>

Despite experimental compliance in terms of lamp appropriation and usage for studying, our experiment exhibits attrition coming from missing grades. Grades are our main dependent variable of interest, but these are not always available for all students in our sample. This could be, for example, because they did not sit the end of term exam or left the school. Specifically, grades data are missing for 13% of our initial sample in Term 1. This increases to 23% in Term 2, and to 39% in Term 3. After the exam in Term 1, students were promoted from 7th to 8th grade. Unfortunately 16% of students in our sample did not pass the exam and had to repeat 7th grade. This explains a large share of attrition between Term 2 and 3, but not all of it. We regress a dummy indicator for those repeating 7th grade on treatment and find an insignificant coefficient.<sup>10</sup> Moreover, in Table 2 we regress a dummy indicator for students with missing grades on treatment and find no statistically significant relation. Notice also that Table 1 shows that balance between treatment and control over balancing and additional baseline variables is preserved across all terms among students sitting the exam. Therefore, we conclude that attrition is unrelated to treatment and that our results are unlikely to be affected by attrition bias.

<sup>&</sup>lt;sup>8</sup>We could not systematically check if students sold the lamp. In the first survey, we asked students to bring the lamp to the interview. About 55% of them did, but many declared that the lamp was installed at home in a way that was not easily removable. Indeed, during our field visit, we saw many cases in which the lamp was wired in the house and used as a proper lighting fixture. During the fieldwork, we visited households at random and with no notice; in all cases the lamp was in the house. In light of this, we believe lamp resale was minimal, if it happened at all.

 $<sup>^940\%</sup>$  of the students reported using the lamp to study all subjects equally, 25% to study mainly mathematics, and 20% mainly science.

 $<sup>^{10}\</sup>mathrm{The}$  coefficient is 0.04 with a p-value of 0.34.

#### 4 Intention-to-treat effect: standard estimates

In this section, we run a series of reduced form regressions to identify the impact of treatment on educational outcomes. Given randomisation, the coefficients of the regressions have a causal interpretation. We show that standard specifications, which do not account for spillover effects, fail to find a significant effect of lamps.

We start our analysis by running an OLS estimation on a pooled crosssection that includes all grades of the end-of-term exams that followed our treatment. Our basic specification is the following:

$$y_{ij} = \beta_0 + \beta_1 \ Treatment_{ij} + \mathbf{Z}_{ij} \boldsymbol{\gamma} + \lambda_j + \epsilon_{ij} \tag{1}$$

where  $y_{ij}$  is the grade of student *i* in class *j*;  $\lambda_j$  captures class fixed effects; and  $\mathbf{Z}_{ij}$  is a vector of controls that includes student's age, mother's education, and number of siblings. We also include the balancing variables used in the re-randomisation as controls.

Then, we extend our analysis to a lagged dependent variable specification. This allows controlling for past grades that, given the cumulative process of education and learning, might influence current grades. We use grades at baseline as the lagged dependent variable of reference. Therefore, we estimate the following regression:<sup>11</sup>

$$y_{ijt} = \beta_0 + \beta_1 \ y_{ij0} + \beta_2 \ Treatment_{ij} + \mathbf{Z}_{ij} \boldsymbol{\gamma} + \lambda_j + \epsilon_{ijt} \tag{2}$$

Finally, we run a first difference estimation that allows us to control for individual fixed effects. Despite the randomisation, this specification offers an important robustness check. The first difference is taken with respect to grades at baseline, so all time-invariant variables between the two periods

 $<sup>^{11}\</sup>mathrm{Also}$  in this case we include as controls the balancing variables used in the rerandomization

are controlled for through the transformation.<sup>12</sup> Therefore, we estimate:

$$\Delta y_{ijt} = \beta_0 + \beta_1 \ Treatment_{ij} + \epsilon_{ijt} \tag{3}$$

Table 3 summarises the main findings of these specifications. We report p-values for clustered standard errors in parentheses and those from permutation test in brackets. We are unable to detect any treatment effect independently from the specification used and the controls that are added.<sup>13</sup>

## 5 Accounting for spillover effects

The lack of intention-to-treat effect found in the previous section could be due to the presence of spillovers. Spillovers can arise from: i) lamp sharing, which increases the quantity and/or quality of study time for both treatment and control students; ii) improved learning of treated students that then share their knowledge with control students; and iii) competition from control students who feel disadvantaged and increase their study effort. We have evidence of source (i) from students surveys and fieldwork experience. Moreover, we cannot rule out the presence of the other two sources. This can explain why we do not find evidence of treatment effects by directly comparing the performance of students in treatment and control groups. For this reason in this section we implement an identification strategy that allows us to account for the presence of spillovers. Moreover, although we cannot distinguish between the sources of spillovers, we are able to disentangle spillovers arising from within-class interaction and from geographical proximity.

#### 5.1 Within-class spillovers

In order to identify spillovers we use the econometric specification of a ran-

<sup>&</sup>lt;sup>12</sup>The controls used in the other specifications are all time-invariant, so they are not included in this case. When controls are included to account for differential trends we still do not find an effect.

<sup>&</sup>lt;sup>13</sup>We present the effect on the average grade across all subjects. We have also run these specifications on each subject and on each end-of-term test separately, but the results are still statistically insignificant.

domised saturation design, as proposed by Baird et al. (2014), where saturation is defined as the percentage of students treated within a class (treatment intensity). This methodology allows for the identification of different components of the experimental effect of treatment: spillovers on the control group, spillovers on the treated group, and treatment on the uniquely treated. This methodology involves a two-step randomisation process: treatment intensity is firstly randomised across clusters; then, individual treatment is randomised within clusters. As argued above, our first step is as good as random and the second step was randomised explicitly.

However, contrary to the original design of Baird et al. (2014), we do not have a pure control group. Therefore, we follow an identification strategy that addresses this limitation as in McIntosh et al. (2014). This involves estimating the pure control outcome by imposing a functional form assumption for the effect of treatment intensity on control students. As we analyse below, a linear functional approximation seems appropriate in our case. Hence, our econometric specification is:

$$y_{ijt} = \beta Treatment_{ij} + \mu (TI_j * \delta_t) + \gamma (TI_j * Treatment_{ij} * \delta_t) + \delta_t + s_{ij} + \epsilon_{ijt}$$

$$\tag{4}$$

where  $TI_j$  captures treatment intensity in class j;  $\delta_t$  is a time dummy for the post-treatment period and  $s_{ij}$  are individual fixed effects.

Estimating regression (4) as a difference in difference model between a specific term date and grades at baseline is equivalent to estimating this simplified version in first difference:

$$\Delta y_{ijt} = \alpha + \beta \ Treatment_{ij} + \mu \ TI_j + \gamma (TI_j \ * \ Treatment_{ij}) + \epsilon_{ijt} \quad (5)$$

 $\beta$  is the treatment effect on the uniquely treated (TUT) and captures the theoretical intention-to-treat effect at the point of zero saturation. Defining  $\pi_j$  as the share of treated students in class j,  $TUT = E(\Delta y_{ijt}|T_{ij} = 1, \pi_j = 0) - E(\Delta y_{ijt}|T_{ij} = 0, \pi_j = 0)$ , where  $T_{ij}$  indicates if a student i in class j is treated or not. The coefficient  $\mu$  is the saturation slope for the control group and captures spillovers on the control group:  $SC(\pi) = E(\Delta y_{ijt}|T_{ij} = 0, \pi_j = \pi) - E(\Delta y_{ijt}|T_{ij} = 0, \pi_j = 0)$ .  $\gamma$  is the differential of the saturation slope for

the treated and measures the effect of changing saturation on the treated compared to the control, so that  $\mu + \gamma$  captures the spillover on treated, defined as  $ST(\pi) = E(\Delta y_{ijt}|T_{ij} = 1, \pi_j = \pi) - E(\Delta y_{ijt}|T_{ij} = 1, \pi_j = 0)$ . This methodology allows us to compute the intention-to-treat measure as the sum of the treatment on uniquely treated and of spillovers on treated such that  $ITT(\pi) = E(\Delta y_{ijt}|T_{ij} = 1, \pi_j = \pi) - E(\Delta y_{ijt}|T_{ij} = 0, \pi_j = 0)$ .

The results of this regression are presented in Table 7. We account for the small number of clusters by i) calculating statistical significance relative to the small sample t-distribution with eleven degrees of freedom while clustering standard errors at the school level; and ii) re-calculating the p-values using randomisation inference as in Rosenbaum (2002).

The results show a positive and significant intention-to-treat effect, such that treated students in a class with average saturation improve grades in mathematics by 0.88 standard deviation.<sup>14</sup> The ITT increases with the level of saturation and it ranges between 0.57 standard deviations at 16% of saturation and 1.1 standard deviations at 62% saturation. Moreover, we can see that there is a positive and significant spillover effect on the control group. The estimates of  $\mu$  are positive, significant, and large in magnitude such that a 10% increase in saturation raises math grades of the control group by 0.22 standard deviations.

As in McIntosh et al. (2014), we do not have a pure control group. Therefore, our ITT estimates rely on an out-of-sample prediction that hinges on the linear specification of the model. In Figure 5, we let the data speak for itself and use a local polynomial smoother to analyse the relationship between grade first difference of control students and treatment intensity. We find a positive relation, which is what we would expect in the presence of spillovers, and a linear functional form seems to be appropriate for the interval of our data. Moreover, adding a squared term on treatment intensity to Equation 5 delivers insignificant results. Our estimates rest on the assumption that the linear specification extends also between 0% and 14% saturation. However, given evidence of positive spillover effects and treatment effects, our ITT

<sup>&</sup>lt;sup>14</sup>The average class saturation in our sample is 43%. The intention-to-treat effect is given by the linear combination of  $\beta + 0.43 \times (\mu + \gamma)$ 

estimates are more likely to provide a lower bound of the true effect due to Jensen's inequality. In fact, one might expect a concave function of treatment intensity on grades at very low saturations. Providing a few lamps to a class at zero saturation is likely to have a stronger effect than providing additional lamps to a class where there is already a moderate level of treatment saturation.

#### 5.2 Geographical spillovers

Externalities may take place not only within the classroom, but also at the homes of treated students. Students live in clusters of houses called *bomas*. There are no roads or illumination to connect bomas, so pupils are unlikely to move between them at night, as they may get lost or encounter wild animals. However, students can interact around the house during daylight or on their way to/from school. Therefore, Equation 5 needs to account for the fact that some of the spillovers that we attribute to class-level interaction, may actually be due to geographical proximity between treated and control students.

We the exploit the exogenous variation in the geographical density of treatment across pupils generated by the experiment. We collected the geographical coordinates of the houses where students live and we use this information to construct a measure of the geographical treatment intensity. For each student, we compute the percentage of treated students within a radius of 500 meters, one kilometre, and 1.5 kilometres of their home. This is will include both students in the same and in a different class, with the latter accounting for about 23% of the variation in the data. We rely on the following specification to identify the overall experimental effect accounting for both within-class and geographical externalities, thereby disentangling the two effects:

$$\Delta y_{ijt} = \alpha + \beta \ Treatment_{ij} + \mu \ TI_j + \gamma (TI_j \ * \ Treatment_{ij}) + \sigma \ GTI_{ik} + \phi (GTI_{ik} \ * \ Treatment_{ij}) + \epsilon_{ijt}$$
(6)

where  $GTI_{ik}$  is the geographical treatment intensity around student *i* within

a radius  $k = 0.5, 1, 1.5 \ km$ .

Table 8 reports the results of Equation  $6.^{15}$  We can see that a positive and significant ITT is confirmed, such that a treated student in a class and geographic location with average saturation improves her grades by 0.9 standard deviations. The results show a positive but not robustly significant spillover effect on control students arising from geographical proximity to treated pupils (coefficient  $\sigma$ ). A 10% increase in geographical treatment intensity within 1km leads to an increase in grades of control students by 0.047 standard deviations, but the result is not robust to randomisation inference. Similarly, geographical spillovers on treated students are also not robust to randomisation inference. Finally, the results in Table 8 show that spillovers on control students associated with class treatment intensity remain stable. Overall, we interpret these results as indicating that withinclass, rather than geographical spillovers, account for the bulk of the spillover effects.

# 6 Mechanism underlying ITT and spillover effects: suggestive evidence on study habits

The analysis of the survey on study habits and the distribution of student activities over the day provides some insight into the underlying mechanism through which lamps can affect treated students and generate spillovers on controls. We find evidence consistent with the lamp influencing study habits. Specifically, the availability of lamps appears to trigger increased co-studying at school during the early evenings among both treated and control students.

Our dependent variables of interest refer to study habits. Students were asked i) if they usually study with other pupils, ii) where they co-study (home vs. school), and iii) at which time of the day (before vs. after sunset). We apply the econometric specification in Equation (5) using these responses as the dependent variable. However, in this case we do not have

 $<sup>^{15}</sup>$ We report the results for geographical treatment intensity within 1km. Measures based on a distance of 0.5 or 1.5 kms yield the same results. Details available upon request.

the dependent variable at baseline, so we run regression (5) as a single crosssection. Moreover, in this case the dependent variable is a dummy variable; hence, the regression specification turns into a linear probability model and the coefficients should be interpreted in probability terms.<sup>16</sup> Given the lack of baseline values of the dependent variables and the reliance on a single cross-section with a limited number of observations, we interpret these results only as suggestive evidence of the relation between study habits and lamp access.

In Table 9 we report the coefficients of the intention-to-treat and the spillover effects on control for a set of study habits. The results on co-studying are positive and significant in both cases, such that in a class with the average treatment intensity of our sample (43%), the incidence of co-studying for treated students increase by 45 percentage points. Moreover, a 10% increase in treatment intensity raises the incidence of co-studying for control students by 10 percentage points. If we decompose co-studying by location and timing, the stronger effect occurs for studying with others at school after sunset. This suggests that an important channel through which the lamp affects student performance is by allowing pupils to study together during a period of the day that was previously less feasible due to the lack of light.

These results are consistent with the responses on lamp sharing and on time use that students gave in our survey. In fact, 48% of treated respondents declared they shared the lamp with other people when studying; 60% of these that they shared the lamps with students of the same class and the remaining shared primarily with siblings. When studying with other students, about 90% of the pupils reported to do so at school. Moreover, Figures 6 and 7 show the ITT on treated students at the average saturation in our sample and the spillover effects on control for specific activities over different hours of the day. The Figures report the coefficients estimated using specification 5 and the bands of the standard errors.<sup>17</sup> The results confirm a significant increase in the incidence of studying at school after sunset for both treated and control students and also a slight reduction of work at home before

<sup>&</sup>lt;sup>16</sup>As a robustness check, we also run a probit specification and all results are confirmed.

<sup>&</sup>lt;sup>17</sup>We report cluster-adjusted standard errors. For ease of illustration we do not report the standard errors from randomization inference, but the main results are robust to the use of this approach.

#### sunset.

There are various reasons that can explain why the lamp allows students to spend more time at school in the evening. Anecdotal evidence from experience in the field suggests that the most plausible explanations are that, first, some lamps are used in class allowing the room to be lit in the darker hours;<sup>18</sup> second, the lamps allow students to walk home safely later in the day, when sunset and darkness are approaching; and, finally, for treated pupils, that students are no longer required to go home early to do chores because they, or their parents, can undertake them more efficiently during the evenings with the use of the lamps. The policy implication of the first point is that electrifying schools, so that students can spend more time in school and study together after class, can have a significant impact on human capital accumulation.

As for the impact of co-studying on better grades we are unable to determine whether this is due to better lighting itself or to the benefits of studying together. However, given that only 48% of treated students stated they shared the lamp with other students, lamp sharing is unlikely to account for all the spillovers. Sharing of knowledge due to interactions between students, as well as a competition effects, where control students increase study effort, are plausible possible candidates. Further investigation using network data on study partners could help to identify the different sources of spillovers.

An alternative explanation for the mechanism underlying the impact of the lamps is that it could be related to the income effect that the lamp generates. Das et al. (2013) show that increasing school inputs may affect household spending responses and, in turn, learning outcomes. The lamp can help generate savings on other lighting fuels, kerosene in particular. Indeed evidence from student surveys and household expenditure surveys indicates that families with treated students experience a reduction in fuel expenditure of about 60-90 Ksh (\$0.66-\$1) per week. This is equivalent to around 10-15% of the median weekly income of households in our sample. Moreover, time use analysis on parents shows that the lamp allows mothers to do

<sup>&</sup>lt;sup>18</sup>In some case teachers were keeping the lamps in the school and in other cases students occasionally brought the lamp with them at school.

chores more effectively at night, freeing time for other activities, especially paid work, during the day and in the evenings.

To explore the possibility that improved learning outcomes could be attributed to income effects associated with the lamp, we ran a household expenditure survey after one year at the end of our experiment and we did not find significant differences across expenditure categories between treatment and control group. So the mechanisms highlighted by Das et al. (2013) do not seem to hold in this context. Our findings are not inconsistent with their results given that they find an effect on household expenditure in the second year and only if the input was anticipated; our survey expenditure was conducted after the first year and the input was not anticipated. Additionally, income effects would only explain spillover effects on grades if the income effect itself spills over onto control households. These considerations strengthen our confidence that the income effect on grades is unlikely to explain the observed effects of the lamps on grades.

# 7 Conclusions

This study presents a novel experiment to assess the effect of access to light on education. Through a randomised control trial, we document an overall positive effect of solar lamps on education in rural Kenya. Once our identification strategy takes into account the potential presence of spillovers, we are able to find a positive and significant intention-to-treat effect and a positive and significant spillover effect on the control group.

Given the small size of the technology shock that our experiment provides, all our estimates are likely to be a lower bound to the true effect of lighting, and energy access more in general, on education. Moreover, any experimental issues like lamp appropriation by teachers and lamp sharing with students in different classes, are likely to bias our estimates downwards. However, solar lamps should not be seen as a substitute for electrification, but as a short-term practical solution to limit the drawbacks on human capital accumulation coming from the lack of electricity. We have also been able to disentangle within-class and geographical spillovers. Most of the spillovers arise from within-class interaction, while geographical proximity between treated and control students does not have a robust effect. The mechanisms through which spillovers arise seem to be related to increased co-studying at school, especially after sunset. Nevertheless, further research into this topic with larger samples and in different settings may help improve our understanding of the effects of light access on education and the mechanisms that can enhance or limit such effects.

## References

- Ambler, K., Aycinena, D., & Yang, D. (2015). Channeling Remittances to Education: A Field Experiment among Migrants from El Salvador. *American Economic Journal: Applied Economics*, 7(2), 207–32.
- Angrist, J. & Lavy, V. (2009). The Effects of High Stakes High School Achievement Awards: Evidence from a Randomized Trial. American Economic Review, 99(4), 1384–1414.
- Baird, S., Bohren, J. A., McIntosh, C., & Ozler, B. (2014). Designing Experiments to Measure Spillover Effects. SSRN Scholarly Paper ID 2505070, Social Science Research Network, Rochester, NY.
- Bruhn, M. & McKenzie, D. (2009). In Pursuit of Balance: Randomization in Practice in Development Field Experiments. American Economic Journal: Applied Economics, 1(4), 200–232.
- Burde, D. & Linden, L. L. (2013). Bringing Education to Afghan Girls: A Randomized Controlled Trial of Village-Based Schools. American Economic Journal: Applied Economics, 5(3), 27–40.
- Das, J., Dercon, S., Habyarimana, J., Krishnan, P., Muralidharan, K., & Sundararaman, V. (2013). School Inputs, Household Substitution, and Test Scores. American Economic Journal: Applied Economics, 5(2), 29– 57.
- Dinkelman, T. (2011). The Effects of Rural Electrification on Employment: New Evidence from South Africa. American Economic Review, 101(7), 3078–3108.

- Duflo, E. (2001). Schooling and Labor Market Consequences of School Construction in Indonesia: Evidence from an Unusual Policy Experiment. The American Economic Review, 91(4), 795–813.
- Gertler, P. J., Patrinos, H. A., & Rubio-Codina, M. (2012). Empowering parents to improve education: Evidence from rural Mexico. *Journal of Development Economics*, 99(1), 68–79.
- Glewwe, P. (2002). Schools and Skills in Developing Countries: Education Policies and Socioeconomic Outcomes. Journal of Economic Literature, 40(2), 436–482.
- IEA (2013). World Energy Report. Technical report.
- IEA (2014). World Energy Report. Technical report.
- Jensen, R. (2010). The (Perceived) Returns to Education and the Demand for Schooling. *Quarterly Journal of Economics*, 125(2), 515–548.
- Lipscomb, M., Mobarak, A. M., & Barham, T. (2013). Development Effects of Electrification: Evidence from the Topographic Placement of Hydropower Plants in Brazil. American Economic Journal: Applied Economics, 5(2), 200–231.
- Lucas, A. M. & Mbiti, I. M. (2012). Access, Sorting, and Achievement: The Short-Run Effects of Free Primary Education in Kenya. American Economic Journal: Applied Economics, 4(4), 226–53.
- McIntosh, C., Alegra, T., Ordez, G., & Zenteno, R. (2014). Infrastructure upgrading and budgeting spillovers: Mexico's Habitat experiment. Technical Report 036, UC Berkeley, Center for Effective Global Action.
- Miguel, E. & Kremer, M. (2004). Worms: Identifying Impacts on Education and Health in the Presence of Treatment Externalities. *Econometrica*, 72(1), 159–217.
- Muralidharan, K. & Sundararaman, V. (2011). Teacher Performance Pay: Experimental Evidence from India. *Journal of Political Economy*, 119(1), 39–77.
- Rosenbaum, P. R. (2002). Covariance Adjustment in Randomized Experiments and Observational Studies. *Statist. Sci.*, (3), 286–327.

- Rud, J. P. (2012). Electricity provision and industrial development: Evidence from India. *Journal of Development Economics*, 97(2), 352–367.
- Schultz, T. P. (2004). School subsidies for the poor: evaluating the Mexican Progress poverty program. New Research on Education in Developing Economies, 74(1), 199–250.

# Figures



Figure 1: Electricity access and primary schooling (WDI data, electricity  $<\!100\%)$ 



Figure 2: Students and lack of electrification



Figure 3: Area of intervention

|    | CLASS SEV<br>MERIT LIS<br>INTERNAL E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EN                                                                                                                                                                                                        |                            | 11                                                                   |                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                 |                                        |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------|------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------|----------------------------------------|--|
| 60 | Punis Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1972                                                                                                                                                                                                      | 5. 33                      | 000                                                                  | 8                            | S.                                                    | Sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the state                     | S                               | TOTAL                                  |  |
|    | Musyoki Wambua<br>Nolinda Nolinge<br>Muendo Peter<br>Mwende Kilonzi<br>Wambua Kyalo<br>Nolinda Mutung<br>Musyoka Kyalo<br>Musyoka Kyalo<br>Musyoka Kyala<br>Musikali Musyoki<br>Matu u Mulet<br>Musikali Kusina<br>leah Kasang<br>Alui Mute<br>Musikali Kusina<br>leah Kasang<br>Alui Mute<br>Musikali Kisina<br>leah Kasang<br>Alui Mute<br>Musikali Kisina<br>leah Kasang<br>Alui Mute<br>Manta Kirindu<br>Musikali Mute<br>Matta Kirindu<br>Musikali Mute<br>Matta Kirindu<br>Musika Kinonzo<br>Musika Kinonzo<br>Musika Mataka | 4<br>4<br>4<br>4<br>4<br>5<br>3<br>4<br>4<br>4<br>4<br>5<br>5<br>4<br>4<br>3<br>4<br>4<br>4<br>5<br>5<br>4<br>4<br>3<br>4<br>4<br>4<br>3<br>4<br>4<br>4<br>5<br>5<br>4<br>4<br>3<br>3<br>4<br>4<br>4<br>4 | 82448624884864644840000664 | 28<br>30<br>26<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 | 6554654444444445444343434333 | 5444444333423342440646004<br>544444333423342443646004 | 23 20<br>30 34<br>21 25 26<br>26 26<br>19 29<br>19 20<br>19 20<br>19 20<br>19 20<br>20 20<br>19 20<br>20 20<br>19 20<br>20 20 | 47555544545454454544445446632 | 6534444454444444444555545334131 | 33222222222222222222222222222222222222 |  |
|    | GRAND TOTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                           |                            | 17                                                                   | 34 5421                      | 2 4<br>986                                            | +1 11<br>264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1343 4                        | 38                              | 15+ 0/09                               |  |
|    | MEAN SCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | بلد . وج<br>14. و5                                                                                                                                                                                        |                            | 10.21                                                                | 44.46                        | 33 · 43                                               | 19.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.31                         | 41.66                           | 214.64                                 |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                           | +                          |                                                                      | (                            | Q.                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | L                               |                                        |  |

Figure 4: Example transcript



Figure 5: Local polynomial smoother of control groups' grades and class treatment intensity



Figure 6: Intention-to-treat by time of day



Figure 7: Saturation slope on control students by time of day

# Tables

Table 1: Balance between treatment and control on variables at baseline

| Explanatory variable: treatment                              | Initial rand | Initial randomisation |             | End of Experiment |  |
|--------------------------------------------------------------|--------------|-----------------------|-------------|-------------------|--|
| Balanced variables                                           | Coefficient  | p-value               | Coefficient | p-value           |  |
| Mathematics                                                  | 2.26         | 0.20                  | 3.1         | 0.19              |  |
| English                                                      | -0.59        | 0.45                  | -091        | 0.60              |  |
| Kiswahili                                                    | -0.29        | 0.81                  | -0.91       | 0.55              |  |
| Science                                                      | 0.51         | 0.78                  | -0.20       | 0.93              |  |
| Social Studies                                               | -1.44        | 0.29                  | -1.75       | 0.33              |  |
| Gender                                                       | 0.00         | 1.00                  | 0.00        | 0.99              |  |
| Wealth index                                                 | 0.02         | 0.77                  | 0.02        | 0.82              |  |
| School 1                                                     | -0.06        | 0.23                  | -0.03       | 0.64              |  |
| School 2                                                     | 0.01         | 0.47                  | 0.03        | 0.26              |  |
| School 3                                                     | 0.04         | 0.28                  | 0.03        | 0.58              |  |
| School 4                                                     | 0.05*        | 0.09                  | $0.08^{*}$  | 0.08              |  |
| School 5                                                     | 0.02         | 0.70                  | -0.04       | 0.37              |  |
| School 6                                                     | -0.03        | 0.42                  | 0.00        | 0.97              |  |
| School 7                                                     | -0.03        | 0.12                  | -0.04       | 0.17              |  |
| School 8                                                     | 0.02         | 0.49                  | 0.02        | 0.61              |  |
| School 9                                                     | 0.00         | 0.99                  | -0.02       | 0.49              |  |
| School 10                                                    | 0.02         | 0.57                  | 0.02        | 0.68              |  |
| School 11                                                    | -0.02        | 0.40                  | -0.04       | 0.29              |  |
| School 12                                                    | -0.04        | 0.22                  | -0.02       | 0.49              |  |
| Additional variables                                         |              |                       |             |                   |  |
| Hours of study                                               | 0.11         | 0.79                  | 0.16        | 0.76              |  |
| Missed days of schools (previous month)                      | 0.06         | 0.78                  | $0.5^{*}$   | 0.07              |  |
| Source of studying light: wood/candle                        | 0.00         | 0.97                  | 0.05        | 0.55              |  |
| Source of studying light: kerosene                           | -0.04        | 0.69                  | -0.05       | 0.60              |  |
| Mother's education                                           | 0.04         | 0.44                  | 0.06        | 0.38              |  |
| ***. **, *, significant at the 1% level, 5% level, 10% level |              |                       |             |                   |  |

Table 2: Attrition

| Y: Grades data available | Term 1         | Term $2$      | Term 3         |
|--------------------------|----------------|---------------|----------------|
| Treatment                | 0.01           | -0.03         | -0.03          |
|                          | (0.04)         | (0.05)        | (0.06)         |
| Grades at baseline       | $-0.003^{***}$ | -0.002        | $-0.009^{***}$ |
|                          | (0.001)        | (0.001)       | (0.001)        |
| Gender                   | $-0.08^{**}$   | $-0.19^{***}$ | $-0.21^{***}$  |
|                          | (0.04)         | (0.05)        | (0.06)         |
| Observations             | 286            | 286           | 286            |

\*\*\*significant at the 1%level; \*\* significant at the 5% level; \* significant at the 1% level. Clustered standard errors at the school level in parentheses.

|              | Cross             | section | Lagged o  | dependent variable | First difference |
|--------------|-------------------|---------|-----------|--------------------|------------------|
| Y: Grades    | (1)               | (2)     | (1)       | (2)                | (1)              |
|              |                   |         |           |                    |                  |
| Treatment    | 0.047             | 0.048   | -0.024    | -0.008             | -0.079           |
|              | (0.60)            | (0.54)  | (0.77)    | (0.91)             | (0.47)           |
|              | $\left[0.3 ight]$ | [0.38]  | [0.58]    | [0.48]             | [0.8]            |
| Age          |                   | -0.057  |           | -0.061             |                  |
| 8*           |                   | (0.26)  |           | $(0.10)^*$         |                  |
|              |                   | [0.65]  |           | [0.46]             |                  |
| Mother's     |                   | 0.038   |           | -0.1               |                  |
| education    |                   | (0.88)  |           | (0.27)             |                  |
|              |                   | [0.59]  |           | [0.44]             |                  |
| Number of    |                   | 0.025   |           | 0.027              |                  |
| siblings     |                   | (0.15)  |           | (0.18)             |                  |
| ~-~-8~       |                   | [0.55]  |           | [0.55]             |                  |
| Grades at    |                   |         | 0.61      | 0.63               |                  |
| baseline     |                   |         | (0.00)*** | $(0.00)^{***}$     |                  |
|              |                   |         | [0.25]    | [0.48]             |                  |
|              |                   |         |           |                    |                  |
| Observations | 646               | 582     | 639       | 575                | 641              |
|              |                   |         |           |                    |                  |

Table 3: Intention-to-treat effect - Pooled regressions

\*\*\*significant at the 1%level; \*\* significant at the 5% level; \* significant at the 10% level. P-Values from clustered standard errors at the school level in parentheses () and p-values from permutation testing in brackets []. The dependent variable is the standardised grade in mathematics. All specifications account for class fixed effects and balancing variables.

|          | Treatment intensity | Class size |
|----------|---------------------|------------|
| Class 1  | 14.20%              | 7          |
| Class 2  | 33.3%               | 18         |
| Class 3  | 33.3%               | 36         |
| Class 4  | 37.0%               | 27         |
| Class 5  | 38.4%               | 13         |
| Class 6  | 40.0%               | 15         |
| Class 7  | 42.8%               | 28         |
| Class 8  | 47.5%               | 40         |
| Class 9  | 48.0%               | 25         |
| Class 10 | 51.4%               | 35         |
| Class 11 | 55.5%               | 9          |
| Class 12 | 57.8%               | 38         |
| Class 13 | 61.9%               | 21         |
|          |                     |            |

Table 4: Treatment intensity variation

Table 5: Mean difference between matched and unmatched students (t-test)

| Explanatory variable: treatment intensity | Coefficient | p-value |
|-------------------------------------------|-------------|---------|
|                                           |             |         |
| Hours of study                            | -0.35       | 0.48    |
| Missed school days                        | -0.16       | 0.55    |
| N. of people in the household             | 0.31        | 0.63    |
| Wealth index                              | 0.06        | 0.12    |
| Source of study light: kerosene           | 0.02        | 0.79    |
| Mother education                          | 0.05        | 0.41    |
|                                           |             |         |

| Explanatory variable: treatment intensity | Coefficient | p-value |
|-------------------------------------------|-------------|---------|
| Mathematics                               | 19.01       | 0.41    |
| English                                   | 13.04       | 0.64    |
| Swahili                                   | 1.67        | 0.91    |
| Science                                   | 55.61***    | 0.00    |
| Social studies                            | -27.7*      | 0.07    |
| Gender                                    | 0.06        | 0.88    |
| Wealth index                              | -0.11       | 0.87    |
| Teacher experience                        | -5.86       | 0.38    |
| Teacher education                         | -0.17       | 0.81    |
| Hours of study                            | -1.06       | 0.71    |
| N. of people in the household             | -1.86       | 0.67    |
| Source of study light: kerosene           | -0.12       | 0.79    |
| Mother education                          | 0.66        | 0.52    |

## Table 6: Balance of treatment intensity

\*\*\*significant at the 1%level; \* significant at the 10% level.

| Y: Grades in Mathematics                                                           |                                                                    |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| $\beta,$ treatment on uniquely treated                                             | $\begin{array}{c} 0.37 \\ (0.25) \\ [0.22] \end{array}$            |
| $\mu,$ saturation slope on control                                                 | 2.21<br>$(0.026)^{**}$<br>$[0.05]^{**}$                            |
| $\gamma,$ differential saturation slope on treatment                               | -1.03<br>(0.18)<br>[0.81]                                          |
| Intention-to-treat:                                                                |                                                                    |
| - Min Saturation (16.6%)                                                           | 0.57<br>$(0.06)^*$<br>$[0.08]^*$                                   |
| - Average Saturation (43%)                                                         | 0.88<br>$(0.028)^{**}$<br>$[0.06]^{*}$                             |
| - Max Saturation (62%)                                                             | $ \begin{array}{c} 1.1 \\ (0.035)^{**} \\ [0.09]^{*} \end{array} $ |
| Spillover effects:                                                                 |                                                                    |
| Marginal effect of $10\%$ higher<br>treatment intensity on <i>control</i> students | 0.22<br>$(0.026)^{**}$<br>$[0.09]^{*}$                             |
| Marginal effect of $10\%$ higher<br>treatment intensity on <i>treated</i> students | $\begin{array}{c} 0.11 \\ (0.18) \\ [0.21] \end{array}$            |
| Observations                                                                       | 641                                                                |

Table 7: RSD estimates - Pooled sample

\*\*\*significant at the 1%level; \*\* significant at the 5% level; \* significant at the 1% level. P-Values from clustered adjusted standard errors at the school level in parentheses () and p-values from randomisation inference in brack-ets[]. The dependent variable is the standardised grade in mathematics.

| Y: Grades in Mathematics                                                                            |                                                                      |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| $\beta,$ treatment on uniquely treated                                                              | 0.52<br>(0.12)<br>[0.15]                                             |
| $\mu,$ class saturation slope on control                                                            | $1.86 \\ (0.002)^{***} \\ [0.09]^{*}$                                |
| $\gamma,$ differential class saturation slope on treatment                                          | -1.33<br>(0.089)*<br>[0.87]                                          |
| $\sigma,$ geo saturation slope on control                                                           | 0.47<br>$(0.019)^{**}$<br>[0.26]                                     |
| $\phi,$ geo saturation slope on treatment                                                           | -0.05<br>(0.83)<br>[0.57]                                            |
| Intention-to-treat:<br>Average Class Saturation (43%)<br>& Average Geo Saturation (37%)             | $0.9 \\ (0.000)^{***} \\ [0.087]^{*}$                                |
| Spillover effects:                                                                                  |                                                                      |
| Marginal effect of $10\%$ higher<br>class treatment intensity on <i>control</i> students            | 0.18<br>$(0.002)^{***}$<br>$[0.09]^{*}$                              |
| Marginal effect of $10\%$ higher<br>geo treatment intensity on <i>control</i> students              | $0.04 \ (0.019)^{**} \ [0.23]$                                       |
| Marginal effect of $10\%$ higher class treatment intensity on <i>treated</i> students               | $\begin{array}{c} 0.05 \ (0.27) \ [0.30] \end{array}$                |
| Marginal effect of 10% higher<br>geo treatment intensity on <i>treated</i> students<br>Observations | $\begin{array}{c} 0.04 \\ (0.015)^{**} \\ [0.33] \\ 521 \end{array}$ |

Table 8: Spillover effect with geographical estimates - Pooled sample

\*\*\*significant at the 1%level; \*\* significant at the 5% level; \* significant at the 1% level. P-Values from clustered 2djusted standard errors at the school level in parentheses () and p-values from randomisation inference in brack-ets[]. The dependent variable is the standardised grade in mathematics.

|                                           | ITT at average saturation (43%)        | Saturation slope<br>on <i>control</i> ,<br>marginal effect<br>of a 10% |
|-------------------------------------------|----------------------------------------|------------------------------------------------------------------------|
|                                           |                                        | increase in<br>saturation                                              |
| Dependent variable:                       |                                        |                                                                        |
| Study with others                         | 0.45<br>$(0.01)^{**}$<br>$[0.02]^{**}$ | 0.10<br>$(0.01)^{***}$<br>$[0.02]^{**}$                                |
| Study with others at school after sunset  | 0.31<br>$(0.07)^*$<br>$[0.04]^{**}$    | $\begin{array}{c} 0.05\\(0.19)\\[0.11]\end{array}$                     |
| Study with others at school before sunset | -0.00<br>(1.00)<br>[0.52]              | 0.03<br>(0.58)<br>[0.28]                                               |
| Study with others at home after sunset    | 0.16<br>(0.11)<br>[0.13]               | $\begin{array}{c} 0.03 \\ (0.19) \\ [0.19] \end{array}$                |
| Study with others at home before sunset   | 0.01<br>(0.35)<br>[0.38]               | 0.00<br>(.)<br>[0.45]                                                  |

#### Table 9: Impact on study habits

 $\label{eq:poly} \begin{array}{c|c} \hline & [0.45] \\ \hline P \mbox{-Values from clustered adjusted standard errors at the school level in parentheses () and p-values from randomisation inference in brackets[]. * p<0.1, ** p<0.01, ***p<0.001. \end{array}$ 

# CENTRE FOR ECONOMIC PERFORMANCE Recent Discussion Papers

| 1437 | Evangelia Leda Pateli                                                     | Local and Sectoral Import Spillovers in Sweden                                                                                                   |
|------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1436 | Laura Kudrna<br>Georgios Kavetsos<br>Chloe Foy<br>Paul Dolan              | Without My Medal on My Mind:<br>Counterfactual Thinking and Other<br>Determinants of Athlete Emotions                                            |
| 1435 | Andrew B. Bernard<br>Andreas Moxnes<br>Yukiko U. Saito                    | Production Networks, Geography and Firm Performance                                                                                              |
| 1434 | Zack Cooper<br>Stephen Gibbons<br>Matthew Skellern                        | Does Competition from Private Surgical<br>Centres Improve Public Hospitals'<br>Performance? Evidence from the English<br>National Health Service |
| 1433 | Nicholas Bloom<br>Raffaella Sadun<br>John Van Reenen                      | Management as a Technology?                                                                                                                      |
| 1432 | Andrew B. Bernard<br>Toshihiro Okubo                                      | Product Switching and the Business Cycle                                                                                                         |
| 1431 | Fabrice Defever<br>Alejandro Riaño                                        | Protectionism through Exporting: Subsidies with Export Share Requirements in China                                                               |
| 1430 | Andrew B. Bernard<br>Renzo Massari<br>Jose-Daniel Reyes<br>Daria Taglioni | Exporter Dynamics and Partial-Year Effects                                                                                                       |
| 1429 | Cletus C. Coughlin<br>Dennis Novy                                         | Estimating Border Effects: The Impact of Spatial Aggregation                                                                                     |
| 1428 | Alan Manning                                                              | The Elusive Employment Effect of the Minimum Wage                                                                                                |

| 1427 | Decio Coviello<br>Andrea Guglielmo<br>Giancarlo Spagnolo                         | The Effect of Discretion on Procurement<br>Performance                                                        |
|------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 1426 | Andrew B. Bernard<br>Andreas Moxnes and Karen<br>Helene Ulltveit-Moe             | Two-sided Heterogeneity and Trade                                                                             |
| 1425 | Stephen Machin<br>Sandra McNally<br>Martina Viarengo                             | "Teaching to Teach" Literacy                                                                                  |
| 1424 | Yatang Lin                                                                       | Where does the Wind Blow? Green<br>Preferences and Spatial Misallocation in the<br>Renewable Energy Sector    |
| 1423 | Andrew B. Bernard<br>Valerie Smeets<br>Frederic Warzynski                        | Rethinking Deindustrialization                                                                                |
| 1422 | Stefano Gagliarducci<br>Marco Manacorda                                          | Politics in the Family: Nepotism and the<br>Hiring Decisions of Italian Firms                                 |
| 1421 | Jordi Blanes i Vidal<br>Marc Möller                                              | Team Adaptation                                                                                               |
| 1420 | Andrew B. Bernard<br>J. Bradford Jensen<br>Stephen J. Redding<br>Peter K. Schott | Global Firms                                                                                                  |
| 1419 | Marco Manacorda<br>Andrea Tesei                                                  | Liberation Technology: Mobile Phones and<br>Political Mobilization in Africa                                  |
| 1418 | Jeremiah Dittmar<br>Ralf R. Meisenzahl                                           | State Capacity and Public Goods:<br>Institutional Change, Human Capital and<br>Growth in Early Modern Germany |

The Centre for Economic Performance Publications Unit Tel 020 7955 7673 Fax 020 7404 0612 Email <u>info@cep.lse.ac.uk</u> Web site <u>http://cep.lse.ac.uk</u>