CRC for Water Sensitive Cities

Biofilters: Design, performance and O&M requirements

Kerrie Burge watersensitivecities.org.au

Australian Government

Department of Industry, Innovation and Science

Business Cooperative Research Centres Programme

Biofilters

- Biofilters are filters for stormwater that utilize vegetation to clean water and maintain the infiltration capacity of the soil.
- Biofilters can manage both water quality and flow impacts of urbanisation.
- Biofilters also have many other benefits.

Vegetation in biofilters

- 1. Double the growth rate (Grey, V. et.al 2018)
- 2. Canopy 8 -10 x larger (Hitchmough, J. 1994)
- 3. Increased lifespan from 13 to 50 years (Skiera, B. and G. Moll. 1992)
- 4. Economic Benefit Leafy Streets 3% Premium House Price (Lyndal Plant, Uni of Qld & Urban Forester)
- 5. Achieve or exceed WQ objectives (E2Designlab & Healthy Land and Water, 2018)
- 6. Microclimate Urban Cooling (Coutts, A and Tapper, N. 2017, CRC WSC)
- 7. Frequent flow & potential flooding benefits (TBC)

Also referred to as: Bioretention systems Biofiltration systems Raingardens

extended detention (0-300 mm) (temporary ponding)

filter media (400-600 mm)

drainage layer (200-300 mm)

Different treatment types

Integration of scale for biofilters

Regional Scale

Hoyland St (Brisbane)

Ascot Waters (WA)

Lynbrook Blvd (Lynbrook)

Allotment Scale

Adelaide Museum (SA)

Lt Bourke St (Melbourne CBD)

Mernda Villages (Mernda)

Batman Drv (Melbourne Docklands)

Baltusrol Estate (Melbourne)

What performance can we expect?

If designed properly vegetated, soil-based biofilters can reduce:

- > 95% of suspended solids, •
- > 85% of total phosphorus,
- > 50% of total nitrogen (> 70% for some configurations) ullet
- > 90% of heavy metals
- up to 80% pathogen removal

Combining WQ & flow management

Design features to help flow management:

- unlined wherever possible \bullet
- maximise opportunity for infiltration and evapotranspiration \bullet
- elevated outlet or no overflow only (infiltration) \bullet

Biofilter Design

Design will depend primarily on:

- 1. System objectives
 - Pollution control
 - Runoff reduction (volume, frequency)
 - Stormwater harvesting, etc
- 2. Site characteristics
 - ✤ Climate
 - Available size
 - Opportunities & constraints

Key findings from field studies

- Effective communication between designers and construction contractors is essential
- > Maintenance requirements initially higher but reduce as vegetation grows (higher planting density helps)

CRC for Water Sensitive Cities

Biofilters: Selection, sizing and functional design

watersensitivecities.org.au

Australian Government

Department of Industry, Innovation and Science Business Cooperative Research Centres Programme

Design Process

Urban designers

Landscape architects

WSUD specialist

Contractors

Landscape architects

Opportunities and Constraints

- Landscape/urban design theme \bullet
- Treatment targets
- Water demands lacksquare
- Catchment properties (size, flow rates, landuse)
- Site levels
- Existing drainage
- Space
- Soil properties (salinity, acidity) \bullet
- Urban design (e.g. solar orientation) \bullet

Opportunities and Constraints

Concept Design STEP ONE: Select stormwater treatment measure(s)

- Biofilter / raingardens
- Wetlands
- Swales
- Ponds

Why might we choose a biofilter / raingarden?

- Attractive landscape features
- Self irrigating (and fertilising) gardens
- Habitat creation
- Potential source of water for reuse
- Not restricted by scale
- Integration with urban design (streetscape)
- Reduce impacts of urbanisation on hydrology
- Remove stormwater pollutants (protect receiving waters)

y iving waters)

Treatment Measure	Potential benefits	Suitable site conditions	Unsuitable conditions	Application to small sites (<1000m ²)
Gross pollutant traps	Reduces litter and debris Can reduce sediment Pre-treatment for other measures	Conventional drainage systems	Sites larger than 100 ha Natural channels	Not suited due to need for periodic cleaning to maintain performance. Grated entry to drainage system can prevent gross pollutant contamination.
On-site infiltration	Reduced runoff Pollutant removal Passive irrigation	Sandy to sandy-clay soils (saturated hydraulic conductivity >36 mm/hr) Flat terrain (<2%) Deep groundwater table	Silty clay to clay soils Steep terrain Shallow groundwater table Saline groundwater Highly polluted runoff	Depends on soil drainage characteristics. Need to ensure that infiltration is below any footings in the vicinity.
Sediment basins	Coarse sediment capture Temporary installations Pre-treatment for other measures	Available land area	Proximity to airports, landfill	Unlikely that occupied site will generate suficient sediment to warrant sediment basin.
Rainwater tanks	Storage for reuse Sediment removal in tank Flood retardation	Proximity to roof Suitable site for gravity feed Incorporate to urban design	Non-roof runoff treatment	Particularly suited. Benefits increase if harvested water used for regular consumptive use – eg toilet flushing.
Vegetated swales	Medium and fine particulate removal Streetscape/landscape amenity Passive irrigation	Mild slopes (<4%)	Steep slopes	Potential landscape element as replacement/ substitute for other forms of drainage.
Buffer strips	Pre-treatment of runoff for sediment removal Streetscape/landscape amenity	Flat terrain	Steep terrain	Potential landscape element. Can make grassed areas environmentally beneficial.
Rain gardens	Fine and soluble pollutants removal Streetscape/landscape amenity Attenuate flows Passive irrigation	Flat terrain	Steep terrain High groundwater table	Potential landscape element as garden bed or planter box.
Ponds	Storage for reuse Fine sediment settling Flood retardation Community & wildlife asset	Steep terrain with confined valleys	Proximity to airports, landfill	Some scope as landscape element (eg incorporation of treatment pond with ornamental water feature). See also rainwater tanks.
Wetlands	Community asset Medium to fine particulate and Some soluble pollutant removal Flood retardation Storage for reuse Wildlife habitat	Flat terrain	Steep terrain High groundwater table Acid sulphate soils	Some scope as landscape element (eg incorporation of wetland treatment within ornamental water feature).
Retarding basins	Flood retardation Community asset	Available space	Limited available space Very flat terrain	See rainwater tanks.

CONCEPT DESIGN

STEP TWO: Determine how treatment elements will be integrated with urban design

- Streetscape vs end of pipe
- Basins vs swales

Bioswales

- Online (treatment and conveyance) •
- Part or full length of swale
- Slope 1-4% (or check dams)

Raingarden basins

- Offline lacksquare
- Less likely to scour \bullet
- Various scales
- Can provide a distributed retention or \bullet retarding function

road

CONCEPT DESIGN STEP THREE: Size treatment measures

- Treatment Curves
- MUSIC

Treatment Performance Curves

MUSIC

Stormwater quality model

- Rainfall runoff
- Pollutant concentrations
- Storage and treatment

MUSIC - Inputs

- Continuous rainfall data
- Catchment details
 - (area, impervious fraction, soils)
- Treatment system dimensions and characteristics

Properties of Bi	o-Retent	ion		_		X
Location Bio	-Retention					_
Low Flow By-Pa	ss (cubic m	etres	per sec)		0.000	
High Flow By-pa	ss (cubic m	ietres	per sec)		100.000	
Storage Propertie	::				,	
Extended Deten	tion Depth	(metre	s)		0.30	
Surface Area (so	quare metre	s)			24.0	
Seepage Loss (mm/hr)			0.00			
Infiltration Proper	ties					
Filter Area (square metres) 11.0						
Filter Depth (metres) 0.4			0.4			
Filter Median Particle Diameter (mm) 0.45						
Saturated Hydraulic Conductivity (mm/hr) 180.00						
Depth below underdrain pipe (% of Filter Depth) 0.0						
Outlet Properties						
Overflow Weir Width (metres) 21.0			21.0			
	Fluxes		No <u>t</u> es		More	
×	<u>C</u> ancel		<⊨ <u>B</u> ack		🖌 <u>F</u> inis	h

MUSIC - Outputs

Predicts treatment performance for reducing pollutant concentrations and loads

FUNCTIONAL DESIGN

- Entry provision
- Overflow provision
- Edge treatments
- Drainage pipes

Drainage Layer

Pipes

- Capacity of perforations AND pipe must be higher than maximum infiltration rate through filter media (freely draining)
- Slotted pipes must have transition layer (slots bigger than perforations)
- Geofabric sock not recommended (clogging risk)
- Each pipe should extend to surface with inspection opening
- Maximum 1.5 m spacing

Tools in WSUD Engineering Procedures: Stormwater

Design assessment checklist example

Bioretention location:					
Hydraulics	Minor Flood: (m ³ /s)		Major Flood: (m ³ /s)		
Area	Catchment Area (ha):		Bioretention Area (ha)		
Treatment Treatment perf	ormance verified fr	om curves?		Y	N
Inlet zone/hyd	raulics	e fer le cetier?		Y	N
Overall flow co	nveyance system su	ifficient for design	flood event?		
Maximum upst traffic amenity	ream flood conveya	nce width does no	ot impact on		
Velocities at in scour?	let and within biore	tention system wil	l not cause		
Bypass sufficie	nt for conveyance o	f design flood eve	nt?		
Bypass has set	down of at least 10	0mm below kerb i	nvert?		
Collection Syst	em			Y	Ν
Slotted pipe ca	pacity > infiltration	capacity of filter r	nedia?		
Maximum spac	ing of collection pi	oes <1.5m?			
Transition laye drainage layer?	r/geofabric barrier	provided to prever	nt clogging of		
Basin				Υ	N
Basin Maximum pond	ding depth will not	mpact on public s	afety?	Y	N
Basin Maximum pond Selected filter r conductivity of	ding depth will not media hydraulic con surrounding soil?	mpact on public s ductivity > 10x hy	afety? ⁄draulic	Y	N
Basin Maximum pond Selected filter r conductivity of Maintenance ad any part of a ba	ding depth will not media hydraulic con surrounding soil? ccess provided to ba asin >6m)?	impact on public s ductivity > 10x hy ase of bioretention	afety? /draulic 1 (where reach to	Y	N
Basin Maximum pond Selected filter r conductivity of Maintenance ad any part of a ba Protection from	ding depth will not media hydraulic con surrounding soil? ccess provided to ba asin >6m)? n gross pollutants p	impact on public s ductivity > 10x hy ase of bioretention rovided (for larger	afety? /draulic 1 (where reach to 5 systems)?	Y	N
Basin Maximum pond Selected filter r conductivity of Maintenance ad any part of a ba Protection from	ding depth will not media hydraulic con surrounding soil? ccess provided to ba asin >6m)? n gross pollutants p	impact on public s ductivity > 10x hy ase of bioretentior rovided (for larger	afety? /draulic 1 (where reach to 5 systems)?	Y	N
Basin Maximum pond Selected filter r conductivity of Maintenance ad any part of a ba Protection from Vegetation Plant species se	ding depth will not media hydraulic con surrounding soil? ccess provided to ba asin >6m)? n gross pollutants p elected can tolerate	impact on public s ductivity > 10x hy ase of bioretentior rovided (for larger periodic inundatio	afety? /draulic i (where reach to systems)?	Y	N
Basin Maximum pond Selected filter r conductivity of Maintenance ad any part of a ba Protection from Vegetation Plant species so	ding depth will not media hydraulic con surrounding soil? ccess provided to ba asin >6m)? n gross pollutants p elected can tolerate elected integrate wi	impact on public s ductivity > 10x hy ase of bioretentior rovided (for larger periodic inundation th surrounding lar	afety? /draulic / (where reach to r systems)? on? on?	Y	N

Design Process

Concept Design

- » Opportunities and constraints
- » Choose a system
- » Integration with urban design
- » Sizing

Detailed Design

- » Plans
- Follow through from functional design

Functional Design

- » Entry
- » Overflow
- » Edges
- » Drainage pipes
- » Checklists

Stringybark Creek infiltration

CRC for Water Sensitive Cities

Construction activities can impact on maintenance requirements

Protect system during construction and establishment of landscaping features

Inspection before handover

Asset Handover	Checklist
Asset Location:	
Construction by:	
Defects and Liability	
Period	
Treatment	
Actual treatment perform	rmance equivalent to design?
Maintentance	
Maintentance plans pro	ovided for each asset?
Inspection and mainter	nance undertaken as per maintenance p
Inspection and mainter	nance forms provided?
Asset inspected for def	ects?
Asset Information	
Design Assessment Ch	ecklist provided?
As constructed plans p	rovided?
Copies of all required p	permits (both construction and operation
submitted?	
Proprietary information	provided (if applicable)?
Digital files (eg drawing	gs, survey, models) provided?
Asset listed on asset re	gister or database?

	Υ	N
	Υ	Ν
1-57		
lan		
	V	NI
nal)		
Παι,		

CONSTRUCTION TIPS

- The design can be counter-intuitive to contractors
- Brief contractors so they understand the concept of naturebased solutions
- Perform site visits by someone who understands functional intent and key points during construction phase
- Good construction will result in good performance and low maintenance

CRC for Water Sensitive Cities

Biofilters: Filter media, vegetation and maintenance

watersensitivecities.org.au

Australian Government

Department of Industry, Innovation and Science Business Cooperative Research Centres Programme

Filter media and drainage layers influence pollutant removal efficiency by:

- Maintain healthy plant growth
- Control hydraulic conductivity
- Prevent leaching of pollutants

Drainage layers and filter media

For systems without a Saturate Zone (SZ), there are three important components:

- 1. Filter media
- 2. Transition layer
- 3. Drainage layer

Drainage layers and filter media

For systems with a saturated zone (SZ), there is also: 4. SZ filter media

Drainage Layer

Important Functions

Prevent loss of filter media

Holds perforated drainage pipes

General Characteristics

2-5 mm screenings

Fine gravel, or

Future - crushed recycledconcrete more sustainable if available must be washed

Transition Layer

Important function

Prevents migration of filter media into drainage layer

General Characteristics

Sand/coarse sand

Indicative particle size (% passing)

1.4 mm	(100 %)
1.0 mm	(80 %)
0.7 mm	(44 %)
0.5 mm	(8.4 %)

KEY DESIGN OBJECTIVES:

Supporting healthy plant growth – and therefore good root growth Maintaining hydraulic conductivity over time – and therefore maintain treatment efficiency

Reducing leaching potential – particularly nutrients

SAZ Filter Media

Course sand – (may not require additional transition layer)

Carbon source

Short term – e.g. pea straw

Long term – e.g. hardwood chips (approx. 6mm grading)

Volume of Carbon source calculated based on C:N ratio expected in stormwater

Approx. 5% by volume

Typical Recipe

98 L sand (by volume) 500 g pea straw 1.5 kg red gum woodchips

Important design consideration - GEOFABRIC Geotextile fabrics not recommended anywhere within the soil

profile or around drainage pipes

Role of vegetation

Research to date has demonstrated the importance of vegetation for raingardens. Some of the important functions of plants include:

350-

Figure A.1 Evolution of hydraulic conductivity during the first 20 months of a bioretention system

Selecting appropriate plant species

- Assess hydrologic requirements of the plants
- Drought tolerant subject to extended dry periods
- Tolerant of freely draining sandy soil lacksquare
- Tolerant of occasional inundation lacksquare

Selecting appropriate plant species

- Growth form
- Extensive fibrous root structures
- Not shallow rooted
- Avoid clumping structures such as bulbs or large corms
- Dense linear foliage with spreading growth form rather than clumping

e corms n rather than clumping

Dense planting (6-10 plants/m2)

High densities increase root densities, protect surface porosity, promote even distribution of flows, increases evaporative losses

Range of species

- » increases robustness
- » accounts for variability in nutrient removal other processes

Layout of vegetation

Dominant Species

- » Extensive planting
- » 6-10 plants/m² depending on plant growth form

Shrubs and trees » Occasional planting according to landscape requirements » <1 plant/m²

Batter planting » Drier species

Raingarden

2

Typical garden bed

What is the objective of long term maintenance?

- To maintain treatment function ✓ For pollutant removal efficiency
- To maintain aesthetics

✓ Varies between sites, budgets etc

Key elements to long term function

Three elements key elements in design and construction

- 1. Appropriate filter media
- 2. Dense vegetation cover
- 3. Protection from sediment during construction

Result - Long tem maintenance is predictable

1. Filter media specification

Correct specification	800
 hydraulic conductivity 	700
• PSD	600
 soil properties 	500
 soil nutrition 	uitia 400
Correct installation	⊻ 300-
 light compaction 	200
	100
	0

2. Dense vegetation cover

- Pollutant removal efficiency related to root structure and density
- Plants have a role in the recovery of infiltration capacity (hydraulic conductivity) as they mature

e and density bacity (hydraulic

Long Term Maintenance Activities

Four areas of maintenance:

- 1. Horticultural
- 2. Drainage
- 3. Filter media
- 4. Observation after rainfall to check infiltration

Horticultural maintenance

- 1. Maintain high plant densities
 - replacement of lost plants (large losses check shade and frost tolerance)
 - limit trimming lacksquare
- 2. Control weeds (manual)
 - manage/reduce herbicide use to prevent overspray
- 3. Assess for and treat plant pests & disease

Drainage maintenance

- 1. Remove blockages from inlets, outlet and overflows
- 2. Check for structural integrity of pits and other civil works
- 3. Remove sediment from pits and entry sites etc. (likely to be irregular occurrence in mature catchment)

et and overflows and other civil works try sites etc. (likely to atchment)

Filter media maintenance

- 1. Remove sediment build up
- 2. Infill any holes in the filter media
- 3. Check for erosion or scour
- 4. Remove solid waste

Observations

Occasionally observe raingarden after a rainfall event to check infiltration. Check for poor drainage.

Has it altered or does it vary from design capacity (e.g. unusually high sediment loads may require installation of a sediment forebay)

Other considerations for successful maintenance

1. Maintenance plan

Include description and sketch of how the system operates

Identify maintenance jurisdiction 2.

> conventional system

Key elements during design and construction

- Correct filter media
- Dense vegetation cover
- Protection during construction

Predictable long term maintenance activities

- Horticultural
- Drainage
- Filter media
- **Observation after rainfall event**

SUMMARY POINTS

Follow us on YouTube

/WaterSensitiveCities

Thank you.

