
Towards a General Methodology to Quantify Disaster Risk at the National Level

Keiko Saito and Rashmin Gunasekera

Disaster risk management

- Disaster (or catastrophic) events can jeopardize the financial stability of companies and national, provincial governments.
- Key questions before an event with respect to management of disaster risk are:
- How much is at risk?
- What would it take to reduce the risk?
- Where and what can we prioritize as interventions?
- interventions?

Source: Atkinson et al. (2006)

Styles of risk assessment

Increasing Effort & Complexity

Hazard/Risk Index

Pros: fast, low data requirements, output easy to understand

Cons: Low resolution, subjective

Historical Scenario

Pros: based on event-specific data, good for frequent hazards

Cons: misses extreme events, potential impacts of climate change

Probabilistic

Pros: accounts for both frequent/low-impact and rare/extreme events

Cons: high data/expertise requirements, need to ensure outputs can be understood

Product	Purpose	Scale	Data Requirements	Cost
Qualitative national risk profile	For advocacy and initiation of DRM dialogue	National	Low: Requires global, regional, and/or national data sets	\$
Community-based disaster risk assessment	To engage communities, communicate risk, and promote local action	Community level	Low: Typically based on historical disaster events	\$
Quantitative national risk profile	For advocacy and initiation of DRM dialogue based on quantitative assessment	National	Low-moderate: Requires global, regional, and/or national data sets	\$\$
Asset-level risk assessments, including cost-benefit and engineering analysis	To inform design of building- level/asset-level risk reduction activities and promote avoidance of new risk	Building / infrastructure level	Moderate-high: Requires high-resolution local data for large spatial areas with clear articulation	\$\$
Macro-level risk assessment for risk reduction, including cost-benefit analysis	To inform urban/regional risk reduction measures	Urban, regional, national	Moderate-high: Requires moderate to high resolution across large spatial areas	\$\$\$
Risk identification to identify critical infrastructure and establish early warning systems	To inform preparedness and risk reduction, based on understanding of potential damage at the regional/local level	Urban, regional, national	Moderate-high: Requires asset-level information across large spatial areas	\$\$-\$\$\$ (broad range depending on geographic scope)
Catastrophic risk assessment for financial planning	For financial and fiscal assessment of disasters and to catalyze catastrophe risk insurance market growth	National to multi-country	High: Requires high- resolution, high-quality data of uncertainty	\$\$\$

Solution: Disaster Risk Quantification

COUNTRYDISASTER RISK PROFILES WORLD BANK @

EL SALVADOR Earthquakes and Hurricanes RISK PROFILE

What is a country disaster risk profile?

An estimation of the potential economic losses to property caused by adverse natural events.

Country Disaster Risk Profile

Applications

Develop key baseline data

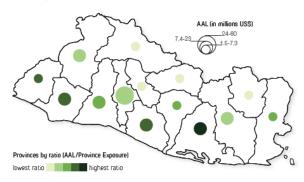
> Evaluate impact of disasters

Promote and inform risk reduction

Inform disaster risk financing

Country At-A-Glance

GDP USS 25.2 billion


Population 6.4 million 37.1 billion

Total Building Exposure US\$ (Replacement Value)

Rural 34% Urban 66%

Two representations of earthquake risk

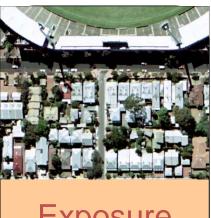
Absolute Risk: The larger the circle, the higher the Annual Average Losses that the province could potentially incur over the long term

Relative Risk: The darker the color the higher the ratio of AAL/Province Exposure. The darkest color represents the province of Usulutan which has a higher proportion of vulnerable structures due to construction types and/or potentially higher earthquake intensity.

The earthquake risk in El Salvador is more significant than the hurricane risk.

Annual Average Loss (AAL) from earthquakes is US\$ 175.93M (0.70% of GDP) and from hurricanes is US\$ 2.94M (0.01% of GDP).

The Probable Maximum Loss for earthquakes (250 year return period) is US\$ 3.9B (15.5% of GDP) and for hurricanes (250 year return period) is **US\$** 374M (1.5% of GDP).

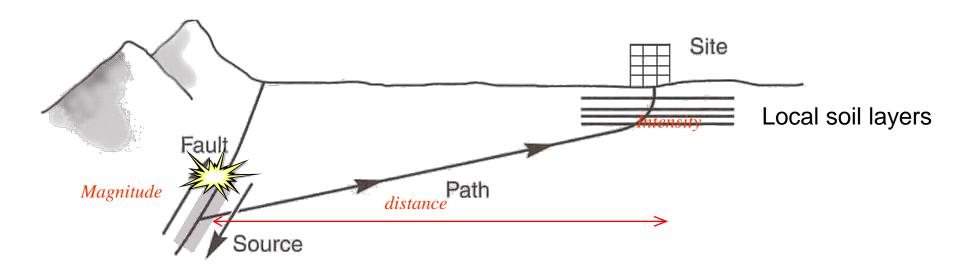

Single-family, residential houses constructed with reinforced masonry bearing walls are the buildings most vulnerable to earthquake accounting for over 31% of AAL.

What is Disaster Risk Quantification?

A quantification of the likelihood (probability) of estimated property, infrastructure, monetary or casualty losses caused by adverse natural event in a specific area.

Hazard

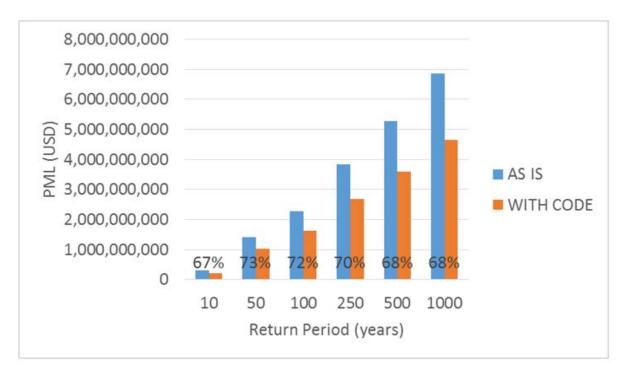
Exposure


Vulnerability

Fatalities, injuries, displaced persons

Damage to buildings, infrastructure, financial loss

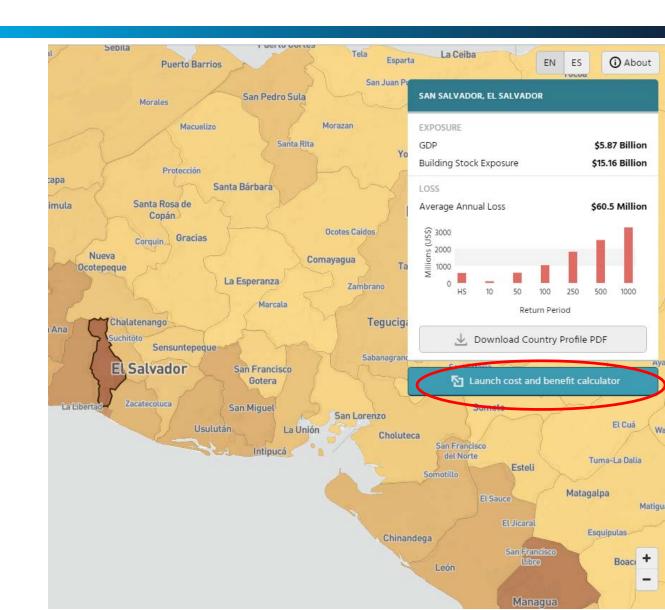
Impact


Disaster loss estimation: Earthquake and its describing parameters

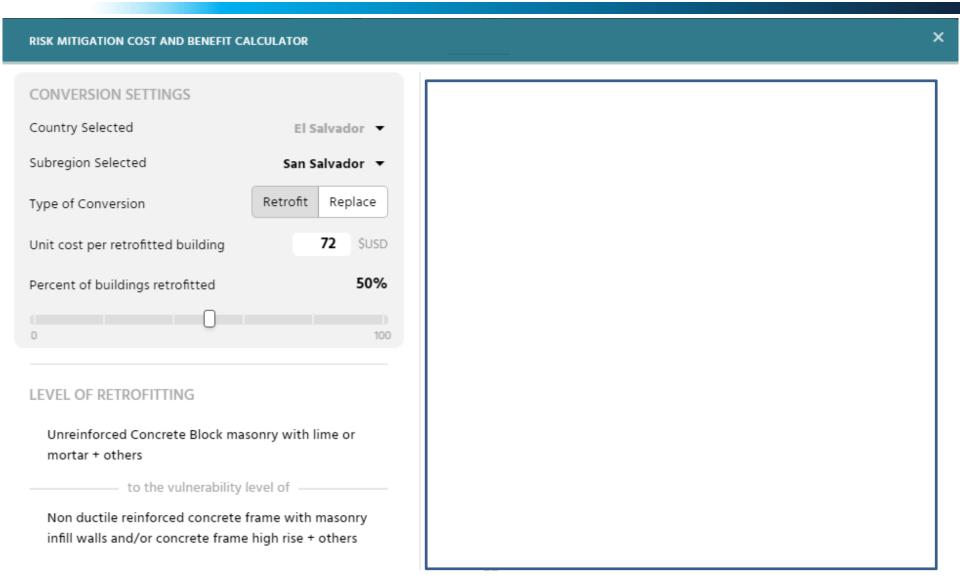
- Released energy of the Earthquake in the source is represented by Magnitude
- Severity of ground motion in a site at a certain distance from source is indicated by Intensity (spectral parameters, etc.) based on the magnitude and attenuation relation
- Due to the intensity and based on the resistance of structures, they will undergo different grades of damage
- This damage will result in *loss* (financial or casualties)
- Achieved through deterministic or probabilistic approaches

A comparison of the "to code" and "as is" runs: Probable Maximum Loss Curve in El Salvador

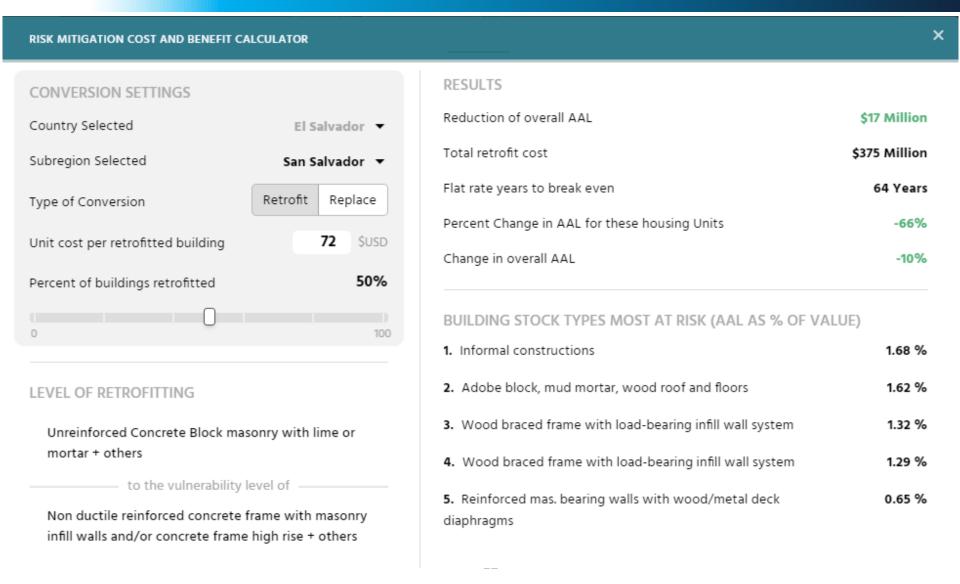
In terms of the PML (probable maximum loss), the total run is around 67-73% of the original "as is". For a 500 year event, it could be expected that a reduction of close to \$2 billion would be expected with full code influence.

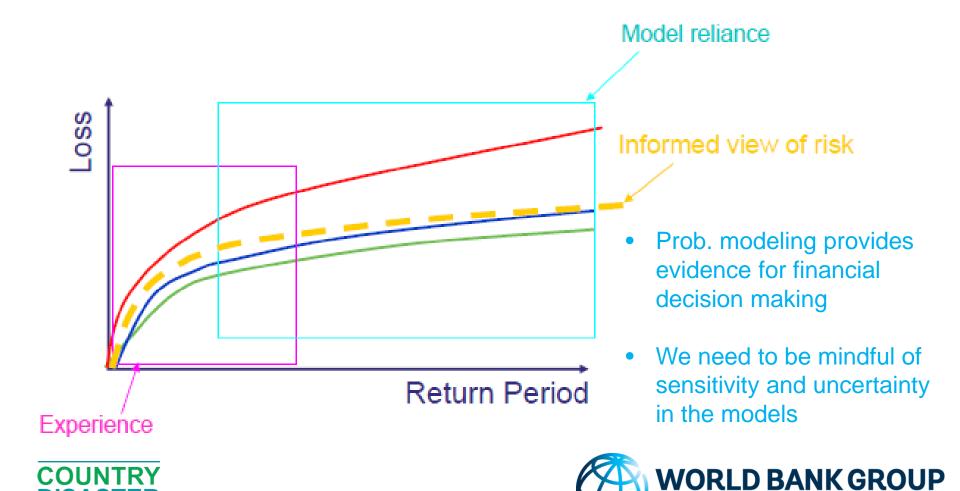


: PML in terms of loss for Concreto-Mixto classes: blue = "as is" run, orange: "to code" run



El Salvador - How to reduce risk?




Impact: What would it take to reduce risk?

Impact: What would it take to reduce risk?

Output: EP curves and implications

Social, Urban, Rural & Resilience

Questions by our clients answered

✓ How much is at risk?

- ✓ Where is it located?
- ✓ What would it take to reduce risk?
- ✓ Help prioritize interventions/strategies

THANK YOU!

Disclaimer

- Results presented are part of the ongoing Country Disaster Risk Profile (CDRP) study. Therefore, presented estimations and results should be considered as preliminary.
- The contents expressed in this presentation are entirely those of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

