Asset Management Contributing to Disaster Risk Reduction

Experience and Challenge in Sendai Wastewater Utility

Tetsuya Mizutani Sendai Wastewater Utility JAPAN

Outline of Sendai City and Sendai Wastewater Utility

Sendai City

- The economic center of the Tohoku region
- Bullet Train : Tokyo–Sendai about 1.5 hours
- Coach : Narita Airport–Sendai about 5 hours
- Population : 1,086,377 (2017.10)
- Modern city in harmony with nature

Sendai Wastewater Utility

- A part of Sendai City municipal government
- 119 years (The 3rd earliest sewer construction in JPN)
- The coverage of wastewater facilities is 99.6%
- The sewer and drainage length is 4,801km
- 5 wastewater treatment plants
- The biggest WWTP, Minamigamo treats 300,000m3/day

At 4pm, March 11, 2011

Outline of damages on the wastewater infrastructure

- Minamigamo WWTP was completely devastated by the tsunami
 - The restoration cost was about 575 million dollars
- Emergency fuel shortage was a big problem to operate facilities
- About 102km of pipes within 4578km were damaged
- 138 domestic wastewater treatment tanks had to be repaired

Evacuation to the rooftop

Road collapse

Inundation by the Tsunami Damage of pumping facility

Liquefaction

Displacement by tremor

Recovery of Sendai Wastewater Utility

Minamigamo WWTP

Response measures based on the BCP

Temporary wastewater treatment by the contact oxidation process

Restoration and reconstruction

Tsunami-proof and eco facility (build-back

Disaster-Resilient and Environmentally-Friendly City

Pipelines

Restoration of damaged pipelines

The by-pass pipe to back up the most important trunk sewer has been constructing

Flood prevention measures in ground subsidence areas after the earthquake

History of Sendai's Asset Management

Development of AM implementation strategy

The AM system of SWU and the benefits

GIS improving in asset management development

- AM requires accurate data of assets and usable GIS
- IT systems were installed and improved according to necessary functions of the management system
- Various data were integrated and linked to the registers

Business processes support the AM system

Jobs of staff members are redesigned for collecting information and controlled by process flows and IT systems

The processes and IT systems contributes to recording asset failures and natural events such as an flooding

Risk management process in SWU

Major risks in SWU were identified

Equipment deterioration | Pipe deterioration | Earthquakes | Inundation

Drafting the mid-term (AM) plan based on the AM system

Benefit of asset management in disaster recovery

The new GIS improved efficiency of the damage survey immediately after the disaster

- Simple rules, procedures and IT systems were necessary for external staffs to conduct the survey
 - The GIS was set up to browse information of pipes and record the survey data.
 - Data input time become drastically shorter in the survey

User-friendly systems are necessary for disaster recovery

Benefits of preparation for disaster

Effect of earthquake resistant measures

- In Japan, the pipe lining method is used for enhancing earthquake resistance of pipe.
- According to the damage survey result, lined pipes didn't damage at all.
- The national ministry prepares a subsidy system and a design standard for earthquake resistant measures.

		Total length	Damage d length	%
	All sewer pipelines	4,758km	102km	2.1
	Lined pipes	72km	0km	0

Pipe lining method is effective to enhance earthquake resistance

Influence of the disaster to our measures

Budget increase after the disaster and asset management

- The national ministry revised the design standard after the disaster.
- The risk criteria of the utility was revised based on the new standard.
- As a result, the budget for rehabilitation including earthquake resistant measures has been increased more than twice before the disaster.

Maintaining and improving the capability for disaster

- An emergency survey drill is conducted every year with other cities, service providers and contractors
- Survey results are used in asset management activities such as risk analysis, CCTV survey and rehabilitation.

- Damage survey procedures, criteria and IT systems are incorporated into our AM system
- New mobile devises are tested in the drill and will be installed into daily operation

Sendai method was used in the damage survey of the Kumamoto Earthquake

Summary

- To build 'Disaster-resilient and Environmentally friendly city' is a long journey.
- Sendai Wastewater Utility incorporates disaster resistant measures and activities into the asset management system.
- We continue to improve our asset management system and make efforts to reduce disaster risk.

