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Objectives:

(1) Understand the steps to build and deploy a machine learning model for 
city authorities.

• 12.30pm-1.30pm: Families of ML algorithms. Five steps to model fitting.

(2) Identify untapped datasets and use cases where ML can help your clients.
• 1.30pm-2.00pm: Brainstorm city cases, identify training data.



1. Introduction
What can Machine Learning do for city authorities?



What is Machine Learning?

"Just as electricity transformed almost everything 100 years 
ago, today I have a hard time thinking of an industry that AI 
won't transform in the next several years"

“Machine learning is the field of study that gives computers the 
ability to learn without being explicitly programmed.”

Arthur 
Samuel 
(1959).

Andrew 
Ng (2017).

Pedro 
Domingos
(2015).

“People worry that computers will get too smart and take over 
the world, but the real problem is they’re too stupid and 
they’ve already taken over the world.”



What is Machine Learning?

A computer program is said to learn from experience E with 
regard to task T and performance measure P, if its performance 
at task T as measured by P improves with experience.

Formal 
definition:

# Task Experience Performance Measure

1 Predict stock prices
History of stock 
prices

Average prediction accuracy

2
Recognize 
handwritten digits

Set of digits with 
labels

Percent of correct 
recognitions

3
Recommend Netflix 
shows

Viewing histories # users viewing show



Why Machine Learning for Cities?

New technologies have 
made cities increasingly 
data-rich environments, 
with large and complex 

datasets.

Urgent need to address 
urban challenges: disaster 
resilience, service delivery, 

poverty, environment.

Expansion of processing 
power, and scalable data 

analysis methods to extract 
actionable information 

from this data. 

Machine Learning techniques have become increasingly essential for urban 
policy analysis, and for developing new technologies that city authorities 

can use to allocate resources and serve their citizens.

1 2 3

Acknowledgment: D. Neill, Machine Learning for Cities, CUSP NYU



Some motivating examples

Preventing violent 
crime

Identifying vulnerable 
buildings for retrofit

Targeting fire 
risk inspections

Early detection of 
disease outbreaks

Predicting 
transport demand

Reducing CO2 
emissions

Acknowledgment: D. Neill, Machine Learning for Cities, CUSP NYU



Supervised Learning

Supervised learning is a category of algorithm that works by generalizing from 
known examples.

Unsupervised learning

We have data but no output labels. Example: Classify YouTube videos or segment 
website customers.

Figure: A labeled training set for spam classification1

1 Source: Géron, Hands-On Machine LearningOther variants of learning include: Semi-supervised, Active and Reinforcement Learning



Families of Supervised Learning algorithms

Linear regression

• Models output as linear combination of inputs 

➢ Fast to train, effective on high-dimensional data.

Decision trees and Random Forest

• Builds flow-chart style rules that maximize information gain

➢ High predictive power, requires less data preparation.

Support Vector Machines

• Learns a decision boundary (linear or non-linear)

➢ Good for complex, medium-size datasets

Neural networks and deep learning

• Algorithms inspired by structure and function of the brain.

• Scalable, highly accurate on complex tasks like image recognition.



Fitting a machine learning model involves five main 
steps

An approach to model fitting

Use Case & 

Data

Determine the 

use-case you 

are interested 

in and source 

data. 

Model 

training

Split the data 

into training 

and test sets. 

Fit model to 

training set.

Tune 

(calibrate)

Tune model 

parameters to

moderate 

complexity & 

interpretability

Predict

Use the 

model to 

make 

predictions 

about test set

Evaluate

Compare the 

predictions 

with the 

actual values

Variables of interest are typically either categorical, supported by 

classification OR numerical, supported by regression



2. Building a model
The mechanics of training a ML algorithm



EXAMPLE:
Predicting mode of 
transport and music 

taste



Decision tree model for transport planning

Scenario 1: The World Bank has hired a talented cohort of 100 new staff, who start 
after Thanksgiving. GSD needs to decide how many bike racks or parking spaces to 
build for them.

53
Survey 

Responses
Live in 

Washington D.C.

66%

Enjoy 
Home Cooking

51%

1 Fictional scenario for teaching purposes



Decision tree model for transport planning

Scenario 1 : The World Bank has hired a talented cohort of 100 new staff, who start 
after Thanksgiving. GSD needs to decide how many bike racks or parking spaces to 
build for them.

Target variable (y)Attributes (𝑿𝟏 … 𝑿𝑵)

Let’s build a classifier!

1 Fictional scenario for teaching purposes



Building a decision tree (CART)

2. Split the samples into two new nodes by asking a ‘true/false’ 
question.
• Is feature k greater than threshold t (example: “age > 35?”)
• Choose the (k, t) combination that produce the purest subsets 

(measure: Gini impurity).

[2 walk-bike; 6 car-train] 
Gini = …

1. Start with all the samples (this is the ‘root node’).

3. Keep creating new splits until each node is pure (contains only 
one class). 

Gini impurity

= 𝟏 −
𝒄𝒍𝒂𝒔𝒔 𝑨

𝒏

𝟐

−
𝒄𝒍𝒂𝒔𝒔 𝑩

𝒏

𝟐

Where n represents number of samples in the node.
1 − (

2

6
)2 −

4

6

2
= 0.38



Decision tree: Transport

At each node, make a split on feature k
to minimize this cost function:

𝑙𝑒𝑓𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
𝐺𝑙𝑒𝑓𝑡+ 

𝑙𝑒𝑓𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
𝐺𝑟𝑖𝑔ℎ𝑡

[12 car-train/
20 walk-bike] 

Gini = 0.47

Live outside DC?

Female?

[10 car-train] 
Gini = 0.00

[2 car-train/
20 walk-bike] 

Gini = 0.17

FalseTrue

FalseTrue

[14 walk-bike] 
Gini = 0.00

[2 car-train/
6 walk-bike] 
Gini = 0.38

Live with family?

FalseTrue

[2 car-train/
1 walk-bike] 
Gini = 0.44

[5 walk-bike] 
Gini = 0.00

Walk-bike

Car-train

MAJORITY CLASS

Fictional scenario for teaching purposes



Decision tree: Music

[17 classical/15 metal] 
Gini = 0.50

Age < 36.5?

Kids presents?

[7 classical/
12 metal] 

Gini = 0.47

[10 classical/
3 metal] 

Gini = 0.36

False

FalseTrue

[6 classical/
1 metal] 

Gini = 0.24

[4 classical/
2 metal] 

Gini = 0.44

FalseTrue

True

[3 classical] 
Gini = 0.00

[4 classical/
12 metal] 

Gini = 0.38

Yoga mat?

'Metal’
75% confidence

At each node, make a split on feature k
to minimize this cost function:

𝑙𝑒𝑓𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
𝐺𝑙𝑒𝑓𝑡+ 

𝑙𝑒𝑓𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
𝐺𝑟𝑖𝑔ℎ𝑡

Fictional scenario for teaching purposes



Complexity, Accuracy & Interpretability

Previous examples illustrate flexible and straightforward approach to classification. 
Splits are interpretable, even if not intuitive

Occam’s razor 
Principle of parsimony

With competing hypotheses to 
solve a problem, select the 

solution with the fewest 
assumptions

Modern ML techniques can trade-off between:

Accuracy and Interpretability
Ideally, you have both. Although maybe one is 

needed more than the other.

Better computing & algorithms

Increasing complexity of models

Higher levels of accuracy



Use Case & 

Data

Model 

training

Tune

(calibrate)
Predict Evaluate



Use Case & 

Data

Model 

training

Tune

(calibrate)
Predict Evaluate



Build labelled datasets for question of interest

1 Using machine learning and small area estimation to predict building-level municipal solid waste generation in cities – Kontokosta et al, (July 2018)
2 Decision trees to predict house prices - James Gammerman (April 2017)

3 Resilient Housing Joins the Machine Learning Revolution – Sarah Antos, Luis Triveno (November 2018)

Question
Attributes 
(𝑿𝟏 … 𝑿𝑵)

Target 
variable (y)

Example

How much solid waste 
will building X produce? 1

Floor space
Building type
Weather
Neighborhood 
characteristics

Tons of waste 
per week

Predict median house 
price by zip code? 2

building_age
avg_rooms
property_tax_rate
employment_dist

Median price of 
owner-
occupied 
homes

Where are the soft-story 
buildings in Guatemala City 3

Building imagery
Estimated building 
height
Estimated roof 
material

Soft story 
building (0/1)



Data collection and cleaning can represent two-thirds 
of the time of an urban analytics project:

Create a good set of features

• Building training data is hard work: be creative.

• For model fitting: Garbage In → Garbage Out

Collection and 
aggregation

Data sharing, 
privacy

Missing data
Merging 

across spatial 
granularities



Use Case & 

Data

Model 

training

Tune

(calibrate)
Predict Evaluate



When fitting ML algorithms, it is common to separate 
data into training and test sets*

Split training and test data

Split the dataset 
(e.g. 70/30 ratio)

Build model on
the training set

Evaluate model on 
the test set

Seems easy, and for the most part – hopefully, it is. A few considerations:
• Time dependence of observations (e.g. with time series)
• Rare events – use up-sampling or down-sampling as required
• Bias / representativeness of training set

Image credit: D. Ziganto “Standard Deviations” blog*A validation set may also be split if needed

Dataset 

Training set
(70% of records)

Test set 
(30%)



There are many different ML techniques which could 
be applied, the ‘right’ one is problem dependent

Train the model

Image credit: Classifier comparison – scikit learn documentation

Figure: The plots show two classes (red and blue), separated using different 
techniques. Classification accuracy is reported on the lower right of each panel.

Input 
Data

Linear 
SVM

RBF 
SVM

Decision 
Tree

Random 
Forest

Which model is 
best?

Easy to ‘try out’ 
many different 

classifiers

Try a few, and 
compare their 
performance



Use Case & 

Data

Model 

training

Tune

(calibrate)
Predict Evaluate



Complexity vs. Accuracy

We can build models of lower or higher complexity 
by changing their parameters.

Aim for the ‘sweet spot’ that maximizes 
performance but avoids overfitting*.

*Overfitting: a complex model that memorizes the test set (including noise in it) 
but fails to generalize to new data.

Simple model 
(some errors)

Overfitting
(will fail on unseen examples)



Complexity vs. Accuracy

We can build models of lower or higher complexity 
by changing their parameters.

Aim for the ‘sweet spot’ that maximizes 
performance but avoids overfitting*.

*Overfitting: a complex model that memorizes the test set (including noise in it) 
but fails to generalize to new data.

Simple model 
(some errors)

Overfitting
(will fail on unseen examples)



Tune model parameters

Decision tree parameters include maximum tree depth, minimum 
samples for a split, and (for Random Forest) number of trees.

➢Choose the parameter combination that maximizes prediction 
accuracy on unseen data. 
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Number of trees

Mode of transport classifier: Random Forest



Use Case & 

Data

Model 

training

Tune

(calibrate)
Predict Evaluate



With the model tuned and fitted to training data, we 
can predict outcomes for test set

Make predictions

We have learnt a 
target function (f) 

that best maps 
input variables (X) 

to an output 
variable (Y): Y = f(X)

Image: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks (2016)

Figure: Object detection in images



3. Evaluating a model
How do I know which model to use, and which 

provides the best results?



Use Case & 

Data

Model 

training

Tune

(calibrate)
Predict Evaluate



Confusion matrix

ROC-curve

Feature importance

Techniques for model evaluation

Use Case & 

Data

Model 

training

Tune

(calibrate)
Predict Evaluate



Confusion matrix

A confusion matrix is a common summary used 
in ML (and statistics) to assess the effectiveness 

of a model. It is used to compare:

Predicted vs. Actual
results

Let’s illustrate with a simple classifier example



Confusion matrix - example

Question: Can we develop a fire detection algorithm to alert the fire department 
when a building is on fire? Consider this algorithm applied to over 10,000 buildings



Confusion matrix - example

Question: Can we develop a fire detection algorithm to alert the fire department 
when a building is on fire? Consider this algorithm applied to over 10,000 buildings

The fire alarm goes off (model predicted)

Yes No

There is 
a fire 
(actual)

Yes

Some cases of detected fires:
10

One fire not detected: 1

TRUE POSITIVE FALSE NEGATIVE

No

About 1% false alarms: 100 Mostly non-fires reported:
10,000

FALSE POSITIVE TRUE NEGATIVE



Confusion matrix - example

Question: Can we develop a fire detection algorithm to alert the fire department 
when a building is on fire? Consider this algorithm applied to over 10,000 buildings

The fire alarm goes off (model predicted)

Yes No

There is 
a fire 
(actual)

Yes

Cases of detected fires: 10 One fire not detected: 1

TRUE POSITIVE FALSE NEGATIVE

No

About 1% false alarms: 100 Mostly non-fires reported:
10,000

FALSE POSITIVE TRUE NEGATIVE

There is a fire in the 
building. An alarm goes 
off, and fire department 

attend. 

Whilst fire is not ideal, it 
is good the detection 
algorithm identified it 

and evidence the model 
is effective



Confusion matrix - example

Question: Can we develop a fire detection algorithm to alert the fire department 
when a building is on fire? Consider this algorithm applied to over 10,000 buildings

The fire alarm goes off (model predicted)

Yes No

There is 
a fire 
(actual)

Yes

Cases of detected fires: 10 One fire not detected: 1

TRUE POSITIVE FALSE NEGATIVE

No

About 1% false alarms: 100 Mostly non-fires reported:
10,000

FALSE POSITIVE TRUE NEGATIVE

Alternate scenario where model fails to detect an actual fire.

Costly failure, potentially resulting in property damage and 
risk to residents living there



Confusion matrix - example

Question: Can we develop a fire detection algorithm to alert the fire department 
when a building is on fire? Consider this algorithm applied to over 10,000 buildings

The fire alarm goes off (model predicted)

Yes No

There is 
a fire 
(actual)

Yes

Cases of detected fires: 10 One fire not detected: 1

TRUE POSITIVE FALSE NEGATIVE

No

About 1% false alarms: 100 Mostly non-fires reported:
10,000

FALSE POSITIVE TRUE NEGATIVE

Alarm is triggered however 
there is no actual fire.

Not as costly as an 
undetected burning building, 

it is annoying as we may 
send resources like the fire 
department to the building.

Want to limit this if possible.



Confusion matrix - example

Question: Can we develop a fire detection algorithm to alert the fire department 
when a building is on fire? Consider this algorithm applied to over 10,000 buildings

The fire alarm goes off (model predicted)

Yes No

There is 
a fire 
(actual)

Yes

Some cases of detected fires:
10

One fire not detected: 1

TRUE POSITIVE FALSE NEGATIVE

No

About 1% false alarms: 100 Non-fires reported: 10,000

FALSE POSITIVE TRUE NEGATIVE

Sub-case with well functioning fire detection algorithm, 
where alarm isn’t triggered when without a fire.

i.e. the ideal algorithm gets both all the positives and 
negatives correct



Confusion matrix - example

Question: Can we develop a fire detection algorithm to alert the fire department 
when a building is on fire? Consider this algorithm applied to over 10,000 buildings

The fire alarm goes off (model predicted)

Yes No

There is 
a fire 
(actual)

Yes

Cases of detected fires: 10 One fire not detected: 1

TRUE POSITIVE FALSE NEGATIVE

No

About 1% false alarms: 100 Non-fires reported: 10,000

FALSE POSITIVE TRUE NEGATIVE



In the above case, we examined a fire detection 
algorithm. What about some other examples:

Confusion matrix - discussion

• Spam email filter
• Allocation of workforce to inspect buildings
• Medical test

In each of these cases, the ‘cost’ of falsely classifying 
either a Positive or Negative ‘Actual’ has different 
implications. 

It is common to trade-off the costs associated with 
False Positives and False Negatives using statistical 

Precision and/or Recall metrics



Model selection

The ROC curve is a 
commonly used 

technique to compare 
models and 

classification of classes 
within in a model.

Aim for the top left. 
Other information 

such as model 
complexity, speed to 

response may be 
considered

Tr
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False positive rate

ROC curve



Feature importance

Feature importance provides us some insight into 
the factors which improve model accuracy.

e.g. What factors are important in explaining 
student outcomes and education performance?

For some questions, we are not so interested in predicting the outcome; 
rather what factors are important at determining an outcome?

0.05

0.05

0.06

0.09

0.10

0.26

Maryland

Gardening or home improvement gear

Theater tickets

Home cooking

Age

Netflix is my most strenuous exercise

Returning to regression tree example, to explain “Arrival time to work”



4. Imagining urban use cases
How could WB apply machine learning techniques to 

better support cities?



Three cases, then over to you:

Case studies

1. Prioritize building inspections

2. Target land-bank interventions

3. Detect polluting plumes



Case 1: Prioritize building inspections

Challenges:

Buildings data can be fragmented across 
agencies.
Time-consuming to build training set.

Management was initially hesitant about 
ML. Deploying as an interactive dashboard 
helped make outputs intuitive.

Outputs / visualization:

Question: Could an algorithm reduce risk in the built environment by sending 
building inspectors to the most dangerous cases first?

Data used:
1. Building characteristics (year built, 

number of floors, retail/residential)
2. Neighborhood demographics (median 

income, percent homes owner-
occupied)

3. City records of prior code violations and 
construction filings.

4. Source of the complaint or referral.

Best model is a Gradient Boosting 
Classifier. Trees: 750; max depth 9.

Trained on data from 2015-2017.

Achieves 70% accuracy on the 
unseen test data (1,200 plumbing 
complaints from 2017-2018).



Challenges:

Targeting properties for buyback or 
demolition required detailed lot-level 
data. 

Negotiating agreements with utilities 
and postal service took time.

Outputs / visualization

Question: Can we train a classification algorithm to identify vacant homes for possible 
intervention by the Detroit Land Bank Authority, without sending officers to look?

Case 2: Target land bank interventions

Data used:

• Voter registration data
• Fire records
• Postal delivery
• Utility bill payment
• ‘Blexters’ (blight texters) labeled 

buildings



Case 3: Plume detection (images)

Challenges:
No readily available plume dataset for 
model training
Requirement to build the training set 
by reviewing lots of images
Biases such as weather and lighting 
conditions impact ability to see plumes

Visualization

Question: Can we develop an algorithm to automatically detect polluting plumes 
(ash clouds) from images of buildings

Data used:
• Images of New York City, Eastern 

Manhattan skyline
• Continuously sampled every 10 sec
• Approx. 1,000 buildings in the field 

of view

Figures: Plume detection examples

Reference: CUSP Urban Observatory, New York University



Over to you..



Case exercise – Part A (15 minutes)

In your table groups, work together to populate a 
similar case study:

Question: [devise your response]

Develop a use-case which you would like to address using Machine Learning
• Choose a city for which this would be useful?
• Consider the: 

• Impact, 
• Users, and 
• Main beneficiaries

Data: [your response here]

What data will support the 
development of this algorithm?
• What data is available?
• What are your data ‘wishes’ and 

‘dreams’?

Challenges: [your response here]

What challenges may be involved in 
developing this ML application, and how 
might you resolve them? For example:
• Privacy
• Stakeholder sensitivity
• Partnerships
• Data granularity



Report out



» Thanks!

Jon Kastelan
jlk635@nyu.edu

Nick Jones
njones@worldbank.org


